

Australian Government

Department of Agriculture, Fisheries and Forestry

Final Report

Asia Pacific Emergency Regional Consultation on the Emerging Shrimp Disease: Early Mortality Syndrome (EMS) / Acute Hepatopancreatic Necrosis Syndrome (AHPNS)

Network of Aquaculture Centres in Asia-Pacific Bangkok, Thailand 9-10 August 2012

1	2
3	4

Cover Photo Credits:

- Normal (left) and affected (right) white shrimp. HP shrunken in affected shrimp (E. Eknath).
- 2. Atrophied hepatopancrease indicative of AHPNS (D. Lightner).
- Hepatopancreas showing pathology associated with terminal stages of the disease (T. Flegel).
- 4. Lesions in the hepatopancrease of affected shrimp (D. Lightner).

FINAL REPORT

ASIA PACIFIC EMERGENCY REGIONAL CONSULTATION ON THE EMERGING SHRIMP DISEASE: EARLY MORTALITY SYNDROME (EMS)/ACUTE HEPATOPANCREATIC NECROSIS SYNDROME (AHPNS)

Network of Aquaculture Centres in Asia-Pacific Bangkok, Thailand 9-10 August 2012

NACA, 2012. Report of the Asia Pacific emergency regional consultation on the emerging shrimp disease: early mortality syndrome (EMS)/ acute hepatopancreatic necrosis syndrome (AHPNS), 9-10 Aug 2012. Published by the Network of Aquaculture Centres in Asia-Pacific, Bangkok, Thailand. August 2012.

Our thanks

NACA wishes to sincerely thank the Australian Government Department of Agriculture, Fisheries and Forestry (DAFF, Australia) for funding the emergency consultation, and for their rapid and timely response to this issue, which has been of great assistance to the region. OIE support for the participation of OIE Crustacean disease experts is gratefully acknowledged. Finally NACA wishes to thank all the resource experts, national participants representing the respective national Competent Authorities (CA) and lead research institutions, regional and international organizations and private sector for their contribution to the regional consultation.

Abbreviations and Acronyms

AHPNS	Acute Hepatopancreatic Necrosis Syndrome
AG	Advisory Group
CA	Competent Authority
CMC	Crisis Management Center of FAO
DNA	Deoxyribonucleic Acid
DAFF	Australian Government Department of Agriculture, Fisheries and Forestry
EMS	Early Mortality Syndrome
ERAAD	Epidemiology and Risk Assessment of Aquatic Animal Diseases
FAO	Food and Agricultural Organization of the United Nations
GC	Governing Council of NACA
HP	Hepatopancreas
IGO	Intergovernmental Organization
IMN	Infectious myonecrosis
IMNV	Infectious myonecrosis virus
MPEDA	Marine Products Export Development Authority (India)
<i>Mr</i> NV	Macrobrachium rosenbergii nodavirus
NACA	Network of Aquaculture Centres in Asia-Pacific
OIE	World Organisation for Animal Health
PCR	Polymerase chain reaction
PL	Postlarvae
QAAD	Quarterly Aquatic Animal Disease
RNA	Ribonucleic Acid
RT-PCR	Reverse transcriptase PCR
SEAFDEC	Southeast Asian Fisheries Development Center
SPF	Specific pathogen free
ТСР	Technical Cooperation Project
TEM	Transmission Electron Microscopy
TS	Taura syndrome
TSV	Taura syndrome virus
WFC	World Fish Centre
WSD	White spot disease
WSSV	White spot syndrome virus
YHV	Yellowhead virus

Table of Contents

Executive Summary	5
A. Background	8
B. Consultation objectives	9
C. Participants	9
D. Process	. 10
E. Technical updates on AHPNS	. 11
Brief History and Spread in the Region	11
Clinical Signs and Pathology	13
Case Definition	14
Primary Cause	14
Disease Emergence and Spread	15
Molecular Tools for Discovering Unknown Pathogens	16
Epidemiology and Risk Factors	17
Management	18
Preparedness and Response	20
F. Group Discussion Fundings	. 21
Current Knowledge, Knowledge Gaps and Research Priorities	21
Detection, Reporting and Surveillance	23
Biosecurity, Emergency Response and Disease Management	24
National / Regional Disease Response	25
G. Workshop Conclusions, Recommendations and Way Forward	. 27
Annex 1: Disease Advisory	
Annex 2: Prospectus	
Annex 3: List of participants	
Annex 4: Provisional Agenda	
Annex 5: AHPNS Technical Presentations	

Annex 6: AHPNS Country Presentations

Executive Summary

On 9-10 August 2012, an emergency regional consultation on Early Mortality Syndrome (EMS) of shrimp and associated pathology described as Acute Hepatopancreatic Necrosis Syndrome (AHPNS) was held in Bangkok, Thailand. The consultation brought together over 87 participants including international shrimp health experts, national governments in the Asia Pacific region and industry stakeholders to share information on this emerging disease, its occurrence, pathology and diagnosis, and to develop a coordinated regional response to the issue. The consultation was organised jointly by NACA and the Australian Government Department of Agriculture, Fisheries and Forestry (DAFF). The AHPNS news story and audio recordings of 19 technical presentations made at the regional Consultation meeting are available on NACA website at the following links.

http://www.enaca.org/modules/news/article.php?article_id=1952 http://www.enaca.org/modules/podcast/programme.php? programme_id=9

EMS or AHPNS?

The generic name EMS has been coined to describe unusually high mortality that can occur commonly within the first 30 days of shrimp grow-out due to a variety of pond management and pathogen related factors. In addition to pond management problems, various well studied pathogens like WSSV, YHV and vibriosis have been commonly linked to EMS. However, due to generic clustering of all potential causes of mortalities reported as EMS, this very broad and imprecise case definition provides little diagnostic value and has led to lot of confusion.

From 2009, however, a new distinctive pattern of mortalities has become evident in the early stages of growout of both *Penaeus vannamei* and *P. monodon*. The syndrome involves mass mortalities of up to 100% within 20-30 days after stocking. Affected shrimp consistently showed an abnormal hepatopancreas, which is usually shrunken and white and is accompanied by loose shells, pale overall colouration, slow growth, corkscrew swimming behavior and moribund shrimp sinking to die at the bottom of the pond. Examination of the histology of the hepatopancreas of affected shrimp revealed massive necrosis of the hepatopancreas. Given these specific signs, the name "acute hepatopancreas and to qualify it amongst other potential causes of early mortalities. For clarity and to avoid confusion, the disease issue focus of the emergency regional consultation will be referred to throughout this document as AHPNS according to the detailed individual shrimp case definition described by Prof Don Lightner (see below). Deaths consistent with AHPNS signs were first reported from China and Vietnam in 2010 followed by Malaysia in 2011 and Thailand early in 2012. The syndrome has caused substantial economic losses to shrimp farmers in the affected countries. The cause is not yet known.

A case definition for AHPNS

Reporting of AHPNS has been confounded by the lack of a clear case definition and by mortality events resulting from varied causes being reported broadly as EMS. To assist in accurate reporting of AHPNS amongst the background of potential causes of EMS, Prof Don Lightner has proposed the following animal-level case definition, which was agreed to in general by consultation participants:

Idiopathic

• No specific disease causing agent (infectious or toxic) has been identified so far.

Pathology

- Acute progressive degeneration of the hepatopancreas (HP) from medial to distal with dysfunction of B, F, R and E cells
- Prominent karyomegaly and necrosis and sloughing of HP tubule epithelial cells
- At the terminal stage, marked inter- and intra-tubular hemocytic inflammation and development of secondary bacterial infections become apparent in association with necrotic and sloughed HP tubule cells.

At the pond level, the following clinical signs could be used for presumptive diagnosis which can be further confirmed by histopathology observed at the animal level

- Often pale to white HP due to pigment loss in the connective tissue capsule
- Significant atrophy of the HP
- Often soft shells and guts with discontinuous contents or no contents.
- Black spots or streaks sometimes visible within the HP
- HP does not squash easily between the thumb and forefinger
- Onset of clinical signs and mortality starting as early as 10 days post-stocking
- Moribund shrimp sink to the pond bottom

Looking for the cause

While the apparent spread of AHPNS to various countries across Southeast Asia suggests that an infectious or at least biological agent might be involved, thus far, preliminary transmission trials using tissue filtrates of affected shrimp sent for laboratory analysis have failed to demonstrate that the disease is caused by a virus and no other infectious agent or toxin has been identified. AHPNS histopathology is suggestive of toxicity, but testing of feeds from affected farms and two crustaceacides including cypermethrin have similarly failed to reproduce the disease. PCR testing has indicated that the disease is not caused by the known viral pathogens WSSV, YHV, IMNV or TSV. While the specific cause(s) of AHPNS remain unknown so far, the possibility of an infectious agent and/or toxin cannot be discounted. As such, immediate research investigations need to focus on resolving this knowledge void by exploring all possible causes of AHPNS with an open mind. It is very important to apply the case definition to all suspected AHPNS detections. It is strongly suggested this case definition be considered as essential for all future epidemiological studies, outbreak investigations and management, diagnosis and laboratory-based research to discover the cause of AHPNS. The need to determine if the cause of AHPNS is infectious is vital as this would have significant implications for biosecurity and response actions. A thorough epidemiological approach to outbreak investigation to improve knowledge about the disease, including to determine if the cause is infectious is urgently warranted. Implementation of precautionary measures to reduce the risk of a possible infectious agent spreading in the region (for example restricting movements from affected areas/countries to unaffected areas/countries) should be seriously considered.

Preparing for the future

As new diseases have emerged in aquaculture species with regularity, the consultation also discussed arrangements to improve response mechanisms to future disease emergencies. One constraint identified is the lack of funding for a rapid response capability in the region. At present, obtaining extra-budgetary funding to investigate and contain an emergency disease will often require lengthy approval processes that preclude funds being made available until the situation has become sufficiently 'hot' to persuade administrators to act.

As more options are available to contain a disease during early stages of it emerging, participants indicated a need to provide a mechanism for very early investigation and incident identification. Such a rapid response mechanism could provide information that could be used for any larger national or regional response (e.g. requests for activation of CMC of FAO, development of a TCP). One additional possibility proposed was to establish a 'regional emergency aquatic animal disease fund' and pre-agreed procedures for activating an investigation or response coordinated regionally by an independent agency such as NACA.

Government agencies were suggested as likely contributors to such a fund, industry representatives indicated they have also invested substantially to research the cause of AHPNS as well as other serious disease issues and they were open to the possibility of contributing to such a fund.

A. Background

A new/emerging disease of shrimp known as acute hepatopancreatic necrosis syndrome (AHPNS) has been reported to be the cause of significant financial losses at farms in China (2009), Vietnam (2010) and Malaysia (2011). Recently, it has been reported in shrimp being farmed in the eastern Gulf of Thailand (Flegel, 2012). AHPNS affects both *P. monodon* and *P. vannamei* and is characterized by mass mortalities (reaching up to 100% in some cases) during the first 20-30 days of culture (post-stocking in grow-out ponds). Considering the consistent characteristic pathology observed in the hepatopancreas of affected shrimp from each of the affected countries, a precise case definition has been provided by Lightner and his group. This case definition is being used with slight modifications to assist research being undertaken by other groups, notably Flegel and his coworkers, and is a major breakthrough in devising strategies to investigate the etiology of this new disease.

Anecdotal information suggests that AHPNS spread patterns may be consistent with an infectious agent. However, as yet no potential causative pathogen (if the disease is infectious) has been identified, and possible etiologies include toxins (biotic or abiotic), bacteria and viruses. Irrespective of the cause, the spread of the disease and its devastating impacts in the countries affected so far warrants increased disease awareness as well as preparedness and contingency planning by other countries in the region potentially at risk.

The NACA Asia Regional Advisory Group on Aquatic Animal Health recognized AHPNS as an emerging disease problem in its 10th AGM in 2011 and called for increased surveillance and reporting from the member governments in the region (http://www.enaca.org/modules/wfdownloads/singlefile.php?cid=132&lid=1053). Considering its potential severity and impact, as a first step, NACA circulated a Disease Advisory on AHPNS (Annex 1 EMS Disease Advisory) widely to Competent Authorities (CA) and concerned stakeholders in 18 member countries. NACA also took up the task of exploring various funding options for convening an emergency regional consultation and succeeded in getting support from the Department of Agriculture, Fisheries and Forestry (DAFF), Australia for convening a 2 day meeting "Asia Pacific Emergency Regional Consultation on EMS/AHPNS" in Bangkok on 9-10 Aug 2012.

NACA and DAFF convened this regional consultation in Bangkok involving global experts, national participants representing the Competent Authority and lead research institutions, regional and international organizations and private sector, with the purpose of knowledge sharing, information exchange and networking to help solve the AHPNS puzzle, prevent its further spread in the region and minimize its impact on shrimp farming industries (Annex 2 Prospectus).

B. Consultation objectives

The Primary Objectives of the Regional Consultation were to:

- Bring together global experts, national participants representing the CA and lead research institutions, regional and international organizations and the private sector
- Facilitate knowledge sharing, information exchange and networking for better understanding and dealing with AHPNS
- Document the current state of knowledge on AHPNS and lessons learned in dealing with disease emergencies at the national/regional levels
- Agree on a regional action plan for dealing with future aquatic disease emergencies in the region

The Specific Objectives included:

- Provide an overview of the current disease situation and its spread, with emphasis on the threats posed to shrimp industries in the region
- > Situation analysis of outbreaks in China, Vietnam, Malaysia and Thailand
- Identify any similar occurrences in other countries in the region
- Develop guidance for future surveillance work by providing a field level disease card, case definition and outbreak investigation template
- Develop or plan collaborative research on AHPNS, intra-regionally and internationally, to identify the primary causative agent and risk factors and to develop management interventions including preventive measures
- Formulate a regional action plan to improve disease surveillance and reporting, and contingency measures to contain and prevent further spread of the disease

C. Participants

Over 87 people attended the 2 day event (Annex 3 List of Participants). This included 17 global experts (Australia, Brunei, Canada, China, Spain, Thailand, UK, USA, Vietnam), 40 national participants representing the Competent Authority and Lead research institutions (Australia, Bangladesh, Brunei, Cambodia, China, Indonesia, India, Myanmar, Malaysia, Nepal, Pakistan, Philippines, Thailand, Sri Lanka, Singapore, Vietnam), 10 private sector representatives (Alltech, Bayer, Cargil, CP, Pfizer, Inve, Novus, Pharmaq), 15 technical officers from regional and international organizations (OIE, FAO, SEAFDEC, MPEDA, WFC, NACA) and 7 post graduate research students (Thailand and Vietnam).

D. Process

The Regional Consultation was conducted as per the agenda (Annex 4 Agenda). Formal opening welcome remarks were provided by Dr Ambekar Eknath, DG of NACA and Dr Ingo Ernst, Director of Aquatic Animal Health of DAFF, Australia. Dr CV Mohan provided a brief presentation on workshop background, objectives, structure and expected outputs. The consultation was conducted in 3 parts. Technical presentations provided latest updates on AHPNS, country presentations shared experiences from the affected countries, four working groups had detailed discussions on different themes and reported back to the plenary session which developed recommendations and follow up actions.

Technical Presentations:

The following technical presentations were made at the consultation. PPTs provided as annex 5 (Annex 5 Technical Presentations)

- Characterization, Distribution, Impacts and Case Definition by Prof Don Lightner
- Research Progress on Bacterial and Viral Causes of AHPNS by Prof Tim Flegel
- Disease Emergence Why and How? by Prof Peter Walker
- Novel Methods for "Hunting for Ghost Viruses" by Dr Jeff Cowley
- Epidemiology and Risk Factors-What We Know? by Dr Flavio Corsin
- Is EMS a Management Problem? by Dr Matt Briggs
- One Month Mortality Syndrome-Revisiting an old story by Dr Celia Pitogo
- Management of EMS-What Works and What Does Not? by Prof Chalor Limsuwan
- Disease Preparedness-Theory and Practice. What Have We Learnt? by Dr Ingo Ernst

Country Presentations:

The following presentations were made by the affected countries (Annex 6 Country Presentations)

- Experiences from China by National Team
- Experiences from Vietnam by National Team
- Experiences from Thailand by National Team
- Experiences from Malaysia by National Team

Audio recordings of all presentations are available on NACA website at the following links:

http://www.enaca.org/modules/news/article.php?article_id=1952 http://www.enaca.org/modules/podcast/programme.php

Group Discussions:

Four working group breakout sessions were organized as follows and specific tasks assigned to the groups to discuss and report back to the plenary session. Group findings were used to draw up recommendations and follow up actions.

Group 1: Current Knowledge, Knowledge Gaps and Research Priorities

• Team: Dr Don Lightner, Dr Tim Flegel, Dr Huang Jie, Dr Jason Weeks

Group 2: Detection, Reporting and Surveillance

- Team:, Dr Flavio Corsin, Dr Ian Gardner, Dr Jeff Cowley, Dr Celia Pitogo Group 3: Biosecurity, Emergency Response and Disease Management
- Team: Dr Larry Hammell, Dr Matt Briggs, Dr Victoria Alday, Dr Ed Leano Group 4: Regional Disease Response
 - Team: Dr Ingo Ernst, Dr Brian Davy, Dr Peter Walker, Dr Supranee Chinabut

The summary and outcomes of the technical sessions and group discussions are captured separately in the sections below to enhance the quality and usefulness of the outcomes to stakeholders in member governments.

E. Technical Updates on AHPNS

Early Mortality Syndrome (EMS) is used generically to describe unusually high mortality that can occur commonly within the first 30 days of shrimp grow-out due to a variety of pond management and pathogen related factors. From 2009, however, a new distinctive pattern of mortalities has become evident in the early stages of grow-out of both *Penaeus vannamei* and *P. monodon*. The syndrome involves mass mortalities of up to 100% during the first 20-30 days after stocking. Affected shrimp consistently showed an abnormal hepatopancreas, which is usually shrunken and white and is accompanied by loose shells, pale overall coloration and moribund shrimp sinking to die at the bottom of the pond. Examination of the histology of the hepatopancreas of affected shrimp revealed massive necrosis of the hepatopancreas. Given these specific signs, the name "Acute Hepatopancreatic Necrosis Syndrome" has been proposed as a more appropriate term, to distinguish this condition from other causes of early mortalities.

Brief History and Spread in the Region

Beginning around 2009, EMS with disease characteristics indicative of AHPNS began to cause significant production losses in southern China. By 2010, the distribution of affected farms in China had expanded, and reports of EMS/AHPNS began to emerge from Vietnam. In 2011, the disease was reported to be in Malaysia and in early 2012, also in the eastern Gulf of Thailand.

China. The occurrence of EMS was recorded initially in Hainan in 2009 but was often confused with "covert disease" and thus ignored by most farmers. In 2011, however, disease occurrences became more serious, especially at farms with a history of culturing shrimp for >5 years and those closer to the sea using more saline water (salinity above 20 ppt) (Panakorn, 2012). Interestingly, reports also suggested that shrimp polycultured in freshwater ponds experienced lower mortality levels (however other confounding factors may have explained this finding). During the first half of 2011, about 80% losses in production were reported at shrimp farms in Hainan, Guangdong, Fujian and Guangxi.

Vietnam. EMS was first reported to be a serious problem in 2010, but widespread devastation in the Mekong Delta (South Vietnam) has occurred since March 2011. The main shrimp production areas affected are the provinces of Tien Gang, Ben Tre, Kien Giang, Soc Trang, Bac Lieu and Ca Mau and cover a total shrimp pond area of around 98,000 hectares. In June 2011, unprecedented losses in *P. monodon* were reported across 11,000 ha of shrimp farms in Bac Lieu, 6,200 ha in Tra Vinh (where it is estimated that in total, 330 million shrimp have died causing a loss of over VND12 billion), and 20,000 ha in Soc Trang (VND1.5 trillion in losses) (Mooney, 2012). As of the first quarter of 2012, the disease is still affecting the Mekong Delta area (Tien Gang: 28.5 ha; Tra Vinh: 1,642 ha; Soc Trang: 359 ha, Bac Liue: 98 ha; and Ca Mau: 4,007 ha) as well as the south central coast (Binh Dinh: 39 ha; Nin Thuan: 6.2 ha; Ba Ria-Vung Tau: 13 ha). The shrimp pond area affected in 2012 is estimated to be in the order of 39,000 ha (Vietnam Country presentation in this report).

Malaysia. EMS was first reported in late 2010 in the east coast of the peninsular state of Johor and subsequently in Pahang, Perak and Penang during 2011. Total production of cultured shrimp were 110,000mt in 2010, 75,000 mt in 2011 and 25,000 mt in 2012 (Jan-May) with 90% production contributed by P.vannamei (source: Malaysia Shrimp Industry Association). EMS resulted in a significant drop in *P. vannamei* production from 87,000 mt in 2010 to 67,000 mt in 2011 (source: annual Fisheries statistics). Production up to May in 2012 is only 25,000 mt (source: Malaysia shrimp industry association) and worse is expected due to EMS being reported in Kedah (May 2012) and Sabah (June 2012). Ongoing studies suggest links to water quality and possible predisposing factors such as paralytic shellfish poison, but these tentative findings require additional investigations to confirm their involvement in the syndrome.

Thailand. So far in 2012, 0.7% total shrimp ponds in Thailand have been affected by EMS, mostly in the coastal areas (Rayong, Chantaburi, Trat, Chacheongsao provinces) along the eastern Gulf of Thailand. To mitigate impacts, a variety of awareness/communication efforts involving close collaboration among government, researchers and the Thai shrimp farmers association at local and national levels are being made.

Species affected

AHPNS affects both *Penaeus monodon* and *P. vannamei* and there are reports that *P. chinensis* is also affected. It is characterized by mass and sudden mortalities (reaching up to 100% in some cases) during the first 20-30 days of culture (post-stocking in grow-out ponds).

Clinical Signs and Pathology (refer Presentation by Prof Don Lightner)

Clinical signs (field level) include a shrunken and white hepatopancreas, often accompanied by loose shells, pale overall body coloration, and moribund shrimp sinking to die at the bottom of the pond. The atrophied (shrunken) HP of affected shrimp are often pale to white because of pigment loss in the connective tissue of the HP sheath or capsule, and black spots or streaks are sometimes visible within the HP due to melanized tubules. The HP does not squash easily between the thumb and forefinger (i.e., it is more rigid, probably because of the large amount of fibrous connective tissue and hemocytes). Disease progression is as follows:

- a) Idiopathic no specific disease causing agent (infectious or toxic) has been associated with the lesion
- b) Acute progressive degeneration of the hepatopancreas (HP) accompanied initially by a decrease of R,
 B and F-cells followed last by a marked reduction of mitotic activity in E-cells.
- c) Progress of lesion development is proximal-to-distal with dysfunction of R, B, F, and lastly E-cells, with affected HP tubule mucosal cells presenting prominent karyomegaly (enlarged nuclei), and rounding and sloughing into the HP tubule lumens.
- d) The sloughed HP cells provide a substrate for intense bacterial growth, resulting in massive secondary bacterial infection (putative *Vibrio* spp.) and complete destruction of HP at the terminal phase of the disease.
- e) Accompanying the initial sloughing of HP tubule epithelial cells and the development of a secondary bacterial infection is intense intertubular hemocytic aggregation and hemocyte encapsulation of necrotic HP tubules and melanization of the more proximal portions of HP tubules in some shrimp.

In summary, the following pathological features have been observed consistently in the hepatopancreas of affected shrimp from all affected countries

- 1. Low activity of B, F and R cells
- 2. Low mitotic rate in E cells
- 3. Rounding-up and sloughing of HP tubule epithelial cells
- 4. Intertubular hemocytic congestion (inflammation)
- 5. Proximal- to-distal pattern of lesion spread
- 6. Distal end last to be affected
- 7. Enlarged nuclei (karyomegally) with prominent nucleoli

- 8. Bacterial infection during advanced/terminal stages of the disease
- 9. Bacterial phase appears to be secondary
- 10. Identical lesions found in *P. vannamei* and *P. monodon* tissue samples

Case Definition (refer Presentation by Prof Don Lightner)

Considering the consistent progressive pathology observed in the HP of juvenile shrimp that die soon after pond stocking, this newly emerged disease has been named Acute Hepatopancreatic Necrosis Syndrome (AHPNS). Dr Lightner has proposed the following animal level case definition for AHPNS to clearly distinguish it from other causes of EMS and as a base-line for future research on this specific condition.

- Idiopathic: No specific disease causing agent (infectious or toxic) has been identified.
- Pathology: Acute progressive degeneration of HP from medial to distal tubule regions with dysfunction of B, F, R and E cells; prominent karyomegaly and necrosis and sloughing of these tubule epithelial cells. In the terminal stage, marked inter- and intra-tubular hemocytic inflammation and development of secondary bacterial infections occur in association with necrotic and sloughed HP tubule cells.

At the pond level, the following clinical signs provide a presumptive diagnosis to be confirmed by animal level histopathology

- Often pale to white HP due to pigment loss in the connective tissue capsule.
- Significant atrophy (shrinkage) of the HP.
- Often soft shells and guts with discontinuous contents or no contents.
- Black spots or streaks sometimes visible within the HP.
- HP does not squash easily between the thumb & forefinger.
- Onset of clinical signs and mortality starting as early as 10 days post stocking
- Moribund shrimp sink to the pond bottom.

Primary Cause (refer Presentation by Prof Tim Flegel)

EMS is commonly used to describe unusually high mortality among shrimp within the first 30 days of culture. Such mortalities can be caused by various well known pathogens such as WSSV and YHV. This imprecise and very broad case definition for high mortality events is thus not particularly useful, and to avoid confusion, the newly emerged disease has been named AHPNS based on the specific animal-level case definition described by Dr Lightner. The precise case definition is critical to ensure research progress across various institutes and countries are focused on the same disease. While the apparent spread of AHPNS to various countries across Southeast Asia suggests that an infectious or at least biological agent might be involved, thus far, preliminary transmission trials using tissue filtrates of affected shrimp sent for laboratory analysis have failed to demonstrate that the disease is caused by a virus and no other infectious agent or toxin has been identified. AHPNS histopathology is suggestive of toxicity, but testing of feeds from affected farms and two crustaceacides including cypermethrin have similarly failed to reproduce the disease. PCR testing has indicated that the disease is not caused by the known viral pathogens WSSV, YHV, IMNV or TSV. While the specific cause(s) of AHPNS remain unknown at yet, the possibility of an infectious agent and/or toxin cannot be discounted. As such, immediate research investigations need to focus on resolving this knowledge void by exploring all possible causes of AHPNS with an open line of investigation. Avenues to explore should include;

- biotic and abiotic toxins in:
 - Pond water & supply water, soils & sediments, etc.
 - Feed & feed ingredients, probiotics, etc.
 - o Old and "new" agricultural pesticides, etc.
- possible new bacteria:
 - These might be revealed by shotgun sequencing of bacterial rDNA & in situ
 - There is also the possibility of a phage-bacterium partnership(s)
- possible unknown shrimp viruses that might be revealed by:
 - Challenge tests with filtered and unfiltered tissue extracts to see if a filterable agent is present
 - o TEM examination of affected shrimp tissues for the presence of viral particles
 - Shotgun sequencing of "viral extracts" & in situ

Preliminary bacterial shotgun testing by PCR resulted in the identification of bacteria in the order Bukholderiales (genera *Ralstonia*, *Delftia* and *Pelomonas*) and Order Actinomycetales (genera *Leifsonia* and *Rhodococcus*). Next step is to make clones of these bacteria and use for *in situ* hybridization to test shrimps from test and control ponds. Probes specific to these bacteria now needed *in situ* hybridization confirmation of their involvement in causing AHPNS histopathology.

Disease Emergence and Spread (refer Presentation by Dr Peter Walker)

To assist guide approaches to identify the cause of AHPNS, it will useful to consider current knowledge and concepts on how new diseases emerge and spread. Disease emergence and subsequent spread often results from some disturbance in the ecology of an infectious agent. Potential pathogens are integral components of all ecosystems and their existence is perpetuated by them being able to be transmitted efficiently without necessarily causing disease. Many pathogens with potential to cause disease commonly infect healthy animals

with no pathology or mortality. A disturbance in ecology can upset the natural balance and result in a normally innocuous pathogen emerging as a new disease agent.

Aquaculture is an important contributor to socio-economic development in many countries, but intensive aquaculture practices often provide ideal environments for emergence and spread of disease because of the following reasons.

- Animals are often cultured in an unnatural environment
- Animals are often cultured at high stocking densities
- Animals are often stressed by culture conditions
- Unregulated trade in live animals occurs commonly

Only through early detection (rapid and accurate diagnosis, effective non-targeted surveillance), rapid response (national/international cooperation and information sharing, contingency planning, surge capabilities) and prediction and prevention (a more challenging option - but less costly socially, economically and environmentally; understanding biological and ecological drivers of pathogen emergence) can we reduce or limit the impact of emerging infectious diseases.

Molecular tools for discovering unknown pathogens (refer Presentation by Dr Jeff Cowley)

There are many methods now available for sequence-assisted and sequence-independent virus discovery that could be applied to help discover viruses or other pathogens if these are the cause of AHPNS. The selection of any particular approach can be guided by what clues become available on the etiological agent of AHPNS from epidemiological, histological and any other observational studies.

Molecular approaches to detect and characterize a pathogen rely mostly, but not exclusively, on some means of acquiring or enriching (i) the pathogen, from which DNA or RNA can then be extracted, or (ii) the pathogen nucleic acid itself. For example, virus particles can be acquired easily by microfiltration through 0.22 µm or 0.45 µm filters, or by high speed clarification of tissue homogenates followed by differential ultracentrifugation through, for example, a sucrose density cushion designed to exclude most organelles and other material of host cellular origin. Alternatively, some viruses have either double-stranded (ds)RNA genomes or synthesis dsRNA genomic intermediates during replication that can be distinguished from cellular RNA. For such viruses, dsRNA can be isolated, for example by gel purification following careful RNase A digestion of extracted total RNA, and used as source material for random cDNA synthesis, PCR amplification, cloning and sequence analysis. As another alternative, RNA from non-affected and AHPNS-affected shrimp could, for example, be randomly amplified by PCR (Differential Display) to identify DNA products unique to affected shrimp, and thus possibly derived from a pathogen.

Once suspected pathogen cDNA or DNA has been acquired by any method, even if in very low abundance, it can be amplified by random PCR methods for either direct sequence analysis or sequence analysis of clones containing amplified DNA fragments. Alternatively, very large amounts (>40 μ g) of very long (>30 kb) DNA can be generated from <10 ng DNA by multiple displacement amplification (MDA) using phi29 DNA polymerase (REPLI-g, QIAGEN), which is ideal for amplifying representative DNA sequences of viruses with long genomes such as WSSV or herpes viruses.

Once amplified DNA is obtained, depending on its nature, options exist to sequence it using either the Sanger dideoxy-sequence terminator methods or any of the several NextGen multi-parallel sequencing platforms (eg. GL-Flex 454 pyrosequencing, Illumina, Ion Torrent). Indeed, based on the extraordinary capabilities of these NextGen platforms to generate massive amounts of sequence information, simple analysis of DNA or of cDNA prepared to total RNA of APHNS-affected shrimp should have the capability to identify pathogen genome/mRNA sequences, and with suitable coverage depth, allow *de novo* assembly of viral/pathogen genomes in the absence of available genome information or database searches to look for relationships to known pathogen sequence motifs.

Epidemiology and risk factors (refer Presentations by Dr Flavio Corsin and Dr Matthew Briggs)

Systematic robust epidemiological studies of AHPNS have not been conducted so far in any country, though considerable amounts of primary and secondary data have been gathered and epidemiological surveys conducted to identify potential risk factors. Working case definitions at the pond/farm level were also developed to complement the individual shrimp level case definition defined by Prof Don Lightner. Until epidemiological approaches are applied systematically to include hatchery, transport, pond, farm and location-specific data, it will be very difficult to pinpoint and prioritize risk factors for AHPNS. Based on circumstantial evidence, AHPNS appears to be associated with either an infectious agent or a (algal) toxin, although other "etiologies" cannot be ruled out. Hatchery and farm management processes might also play a key role.

Potential risk factors, which need to be reconfirmed with more robust quality data sets, have been deduced from observations that AHPNS outbreaks may be more likely to occur;

- in more intensive/high density systems
- with *P. monodon* compared to *P. vannamei*
- at locations closer to the sea with higher water salinity
- with seed sourced through some supply chains
- at farms not employing water reservoirs

Preliminary data also suggested that AHPNS severity may be greater;

- at older farms close to the sea
- at farms with poorly prepared ponds (no sludge removal) & poor management leading to excess nutrient pollution
- at locations with overcrowding of farms, sharing of water sources
- at farms/locations that overuse chemicals
- at farms using higher intensification
- when seed experiences stress during transportation
- when poor-quality (bacterially-infected) seed is used (although 54% of Malaysian farmers and many in Thailand report faster-growing SPF seed is affected more severely than slower-growing seed)
- when water salinity at stocking is high and with high and fluctuating temperatures,
- when seed are overstocked and overfed
- in ponds with inadequate aeration and evidence of toxic levels of H₂S

AHPNS severity appears to be lower at farms;

- using low salinity (<20 ppt) water
- inland and thus far from sea, using plastic-lined ponds, using biofloc systems (many, but not all, farms using biofloc or semi-biofloc report less problems)
- using high quality seed,
- using especially SPF P. monodon
- that strictly monitor and control early feeding rates
- using thorough pond and environment disinfection protocols (for both viruses and bacteria) prior to stocking, high quality probiotics and specific immune-stimulants

Future epidemiological studies should consider these factors to validate the observations and associations deduced from the rapid and thus preliminary survey. The need for systematic investigation of outbreaks was emphasized strongly in the consultation. All unusually high early mortalities of seed should be investigated thoroughly and only those that fit the pond-level and animal-level case definitions should be reported as AHPNS. Clinical signs (field level) should be observed carefully and be used only for presumptive diagnosis until confirmed by evidence of characteristic APHNS histopathology closely fitting the case definition.

Management (refer Presentations by Dr Matthew Briggs and Prof Chalor Limsuwan)

National Level: Assuming that AHPNS has an infectious etiology, the likelihood of AHPNS spreading to other countries in the region cannot be discounted. This could be mitigated especially by restrictions on movements of live seed and broodstock.

Measures suggested to contain AHPNS spread to non-affected countries include;

- only translocate live shrimp after conducting robust import risk analyses
- exercise considerable caution if seed and broodstock are introduced from affected countries
- increase surveillance efforts and study suspected AHPNS-like outbreaks thoroughly
- build capacity for early detection and rapid accurate diagnosis (especially histology), effective nontargeted surveillance of AHPNS
- developing contingency plans with agreed roles and responsibilities to mount a rapid response in the event of its occurrence
- enhance coordination and cooperation at an international level through constitution of a task force (e.g. Vietnam, Thailand) to deal with the disease

Farm/pond level: Since very little is known about AHPNS, including its primary etiology and whether it is infectious or not, it is very difficult as yet to recommend scientific management interventions. However, based on observations on AHPNS and past experience in dealing with various infectious diseases in shrimp, several options can be considered to manage or prevent it from occurring. Importantly, these management options remain good-practice recommendations, and their effectiveness has yet to be demonstrated fully.

Some of the generic management options suggested include;

- avoiding high risk practices (live feeds; co-cultivation)
- implementing pathogen exclusion practices (seed selection; pond environment considerations)
- employ stress reduction practices (good culture management systems)
- employ disease containment practices
- employ responsible trading practices

Some of the suggested shrimp health management practices that may be beneficial but have no proven or specific benefit for managing AHPNS include;

- Stocking with older seeds
- Use of only good and healthy post larvae at PL 10 or older
- Stocking with only healthy post larvae (e.g., check condition of the HP) from reliable hatcheries that use only approved probiotics
- Use of seeds from known sources since these present lower risk than those from nursery/middlemen
- Implementation of better management practices with a focus on pond preparation
- Use of approved quality immunostimulants
- Restriction of live shrimp movements
- Use of biofloc technology
- Disinfection of disease ponds as quickly as possible

- Implementation of surveillance, monitoring and proper reporting of all outbreaks
- Decrease in the stocking density (SD) to $<100/m^2$
- Increase in caution regarding the use of probiotics
- Use of appropriate water management to eliminate pathogens and their carriers
- Avoidance of probiotic over use during the first month post-stocking
- Maintaining pond water pH at 8.0 ± 0.2
- Maintaining alkalinity at not lower than 100 mg/L (ppm)
- Maintaining DO at 4.0 mg/L at all times
- Maintaining consistent water color (phytoplankton)

There was considerable discussion and debate on the role of probiotics in AHPNS. It is widely believed that the use of probiotics is totally uncontrolled among shrimp farms. It was considered that the possibility of use of low quality, unapproved probiotics having a role in EMS/AHPNS could not be discounted. In view of this, caution was urged while using probiotics in shrimp ponds.

Preparedness and Response (refer to Presentation by Dr Ingo Ernst)

An aquatic animal disease incident would constitute an emergency if it could have significant impacts—either economic [production or trade], environmental or human health—and immediate response action might be needed to mitigate impacts and return industry to normal production and trade. Given the severe production impacts of AHPNS, its occurrence in a new country or region could be considered an emergency.

Should a disease emergency occur, the possible response actions would depend on the nature of the disease incident, for example: whether the disease occurred in closed or open systems, its distribution (e.g. restricted or widespread), existing knowledge on the disease (e.g. epidemiology), available tools (e.g. diagnostics), potential consequences, cost-benefit of response and technical feasibility. Each emergency response will differ, but basic response options include containment, eradication, and mitigation and management. Early responses provide more opportunities for effective response (e.g. eradication) and would usually deliver the highest return on investment in response activities. Activities that prevent a disease from entering a country or region are likely to provide the highest return on investment.

Where a disease becomes widespread in a country the opportunities for effective response become limited and mitigation and management of the disease impacts at an enterprise level may be the only way of managing the disease. Mitigation and management is likely to be the least cost-effective response option.

For countries where AHPNS occurs in a restricted distribution there may be opportunities to contain the disease (assuming it has an infectious etiology) to reduce its spread and limit impacts. For countries where AHPNS has not occurred the most cost-effective measures are likely to be those that prevent the entry of the disease—should it have an infectious etiology.

Emergency responses can be described by several response phases including disease freedom, alert, incident investigation, response and recovery. Each phase requires the activation of resources and processes to enable effective response actions. Some basic principles of an emergency response include:

- **Prevent** program of risk reduction measures
- **Detect** rapid detection and identification of the disease
- **Contain** early implementation of control measures to prevent spread of the disease
- **Investigate** rapid definition of the nature and extent of the outbreak
- **Decide** decision on an appropriate response objective and plan
- **Respond** marshal personnel and resources to implement the response plan
- **Recover** undertake activities to return to production and trade

F. Group Discussion Findings

The issues identified by the groups and their recommendations were as follows:

1. Current Knowledge, Knowledge Gaps and Research Priorities

Group 1 sought to summarize the current state of knowledge on AHPNS, identify knowledge gaps and recommend research priorities, and to identify possible research networks and teams:

- Development of an information sheet summarising the gross signs of AHPNS was required as a priority to aid pond-side presumptive diagnosis. The gross signs of AHPNS were summarised as:
 - Often pale to white HP due to pigment loss in the connective tissue capsule.
 - Significant atrophy (shrinkage) of the HP.
 - o Often soft shells and guts with discontinuous contents or no contents.
 - o Black spots or streaks sometimes visible within the hepatopancreas.
 - Hepatopancreas does not squash easily between thumb and forefinger.
 - Onset of clinical signs and mortality starting as early as 10 days post stocking.
 - Moribund shrimp sink to the bottom.
- The case definition for AHPNS proposed by Prof Lightner was generally agreed on:
 - o Idiopathic no specific disease causing agent (infectious or toxic) has been identified.
 - Pathology: Acute progressive degeneration of the hepatopancreas from medial to distal region with dysfunction of B, F, R & E-cells, prominent karyomegaly and necrosis and sloughing of

these tubule epithelial cells. Terminal stage shows marked inter- and intra-tubular hemocytic inflammation and development of secondary bacterial infections that occur in association with necrotic and sloughed HP tubule cells.

- The immediate research priority was to identify the cause of AHPNS:
 - A robust challenge study is required to determine if AHPNS is transmissible and to fulfil Koch's-River's postulates (for example using non-frozen material by the oral route or by reverse gavage using filtered and unfiltered homogenates and by using water/sediment exposure.
 - Cohabitation challenge should be considered using affected shrimp cohabitated with nonaffected SPF shrimp
 - Examination of cohabiting pond decapod species to determine if any other species are affected or can act as carriers.
 - If evidence of transmission is found and the pathogen remains elusive, consider using molecular tools such as pyrosequencing, subtractive hybridisation libraries and computational subtraction to search for genome sequences of cryptic pathogens.
- A thorough and robust epidemiological study is a priority that needs to consider a range of parameters including abiotic, edaphic and climatic, etc.
 - Fit available data retrospectively and make a predictive model based on data to date? Farm infectivity rates etc.
 - Develop a risk model based on existing information?
- The toxico-pathology should be investigated (biotic and abiotic toxins should be considered)
- As a lower priority, investigate moulting frequency and possible factors disrupting moulting due to damage to the hepatopancreas and hence soft and loose shells.
- Investigate the possibility of immune-deficiencies using genetic markers.
- Overall, a more forensic approach to the investigation of AHPNS is required, using a chain-ofevidence approach to separate facts from fiction.
- Countries could consider combining available resources for investigating AHPNS to avoid duplication of effort. A joint program would help create consensus on the best scientific approaches, develop the best team drawing on experts from different countries, and facilitate coordination of remedial or regulatory action, inspections etc across jurisdictions. Such a program could be coordinated by NACA or a similar regional mechanism, and overseen by an international steering committee.
- NACA is well placed to act as a clearing house for information, communication of R&D outcomes or establishing a community dialogue hub for researchers to share experience on AHPNS, for example through email listserve, wikis, social media, the web etc.
- Recommend to investigate the possibility of convening a biannual meeting for researchers to share experiences and research outputs on AHPNS.

- Recommend that NACA lobby to establish a joint/community funding pool shared between countries to address common objectives and facilitate exchange of histology slides and other materials between researchers.
- Important to begin to responding to AHPNS now based on the limited information that is available, rather than to wait for more information to come to light.

2. Detection, reporting and surveillance

Group 2 considered issues relating to the detection, reporting and surveillance for AHPNS:

- Surveillance needs to consider the capacity, desire (may be related to the availability of compensation) and resources available in a country, as well as the perceived level of threat.
- Surveillance needs to consider the capacity, desire (may be related to the availability of compensation) and resources available in a country, as well as the perceived level of threat.
- Criteria for identifying a suspected AHPNS outbreak at the pond / farm level were proposed:
 - Known affected country/area (highly specific criteria are desirable)
 - >10 dead shrimp/day (or expressed as a percentage of shrimp in the pond)
 - <30days (but later can change)
 - Gross signs (hepatopancreas white/small and resists compression)
 - Country/ area not known to be affected (highly sensitive criteria are desirable).
 - >2 dead shrimp/day
 - <40days (but later can change)
 - Gross signs (hepatopancreas white/small and difficult to squeeze)
 - Pond (confirmed): at least one positive shrimp meeting the case definition proposed by Dr Lightner
 - Farm (confirmed): at least one confirmed positive pond
- When collecting data about an affected pond or farm, data should also be collected from unaffected 'control' ponds or farms without "unusual" mortalities where possible for comparison.
- Recommend developing a sampling kit for the benefit of government officers, including guidance/photographs on selection of ponds and collection of samples. The kit should include standardized data collection sheets to ensure that required information is collected, including data on likely risk factors. The kit should include access to fixatives such as Davidson's (ideally) or formalin.
- Recommend developing an information kit (flyer etc) for farmers including guidance on gross signs and control measures.
- Develop a national/international list of reference laboratories that have the capacity to diagnose AHPNS, and web sharing mechanism for pathology and reference slides.

• Encourage affected countries to provide reports and epidemiological information to existing regional/international reporting mechanism (eg. OIE or NACA QAAD program) including information on changes in the distribution or behavior of the disease.

3. Biosecurity, emergency response and disease management

Group 3 considered issues related to biosecurity, emergency response and disease management, including:

- Necessary measures to reduce the risk of AHPNS spreading (if considered an infectious aetiology).
- Guidance on response actions in the event of new detections of AHPNS affected (including outbreak investigation).
- Measures to manage the impact of AHPNS in endemic areas.

Measures to reduce the risk of AHPNS spreading:

- Control transboundary movement of live shrimp particularly from affected areas to unaffected areas.
- Zoning of affected countries and restriction of movement from affected areas to unaffected areas, creation of a buffer zone to be monitored, tracking of live shrimp moved from affected areas within a specified time (1-2 months?) and followed up by surveillance.
- There is a concern on the importation of commodity shrimp for reprocessing from affected areas into free areas
- Treatment of outbreak ponds before the release of the water.
- Implementation of adequate biosecurity at harvest and post-harvest in affected countries/areas including harvest, effluent and solid waste from processing plants.
- Capacity building of national reference laboratories for AHPNS diagnosis (also service labs if available).

While information is required to make some of these decisions, waiting for 'enough' information may be too late. Better to start reacting now. Specific areas of research required to support control measures are:

- Transmission trials at pond level.
- Study of possible pond-related trigger factors (toxins?).
- Identification of possible sources: Broodstock and postlarvae, possible carriers including wild aquatic animals, plants and phytoplankton etc.
- Risk factors (eg. soil versus lined ponds, fresh water versus sea water etc).
- Economic impact of the disease, to help raise awareness of the need to address AHPNS and invest in research and control measures by all stakeholders.

Development of an AHPNS awareness program was suggested to:

- Disseminate findings of scientifically reliable research studies undertaken by institutes/private companies.
- Involve the private sector including farmer associations and corporations.
- Disseminate concern on probiotic use (quality and quantity) and forestall a possible jump into the alternative of antibiotic use, which is unlikely to provide a solution.
- Disseminate information on the economic impact of the disease.

Establishment of an international task force to coordinate and direct efforts was suggested to consolidate information on AHPNS across countries (globally FAO, regionally NACA). Confidentiality would have to be assured for the task force to function, and the group should also seek to gather information from local producers, as the main source of primary data.

4. National / regional disease response

Group 4 addressed issues relating to a coordinated national and regional/international response to AHPNS. The group sought to:

- Document lessons learned in dealing with emergencies at the national and regional level, including lessons learned in:
 - Moving the decision making scale from local to national responses.
 - Governance and decision making around high profile economic / trade issues.
- Recommend priorities for strengthening national and regional responses (e.g. access to expertise, resources, emergency funds).
- Discuss existing mechanisms and the role of regional and international organisations and past experiences.

Overall it was felt that capabilities and arrangements for responding to disease emergencies across the region had improved considerably in recent years. The apparent containment of IMNV to Indonesia suggests that national biosecurity arrangements are stronger than they once were.

The key lessons learned were as follows:

- Greater emphasis should be placed on improving preventative measures, as this is the most costeffective point to deal with AHPNS
- Vietnamese experience with AHPNS suggests that it is important to activate a national response group as early as possible. In the Vietnamese example, a task force is responsible for:
 - Facilitating communication and cooperation across ministries and provinces.
 - Preparing situation reports.
 - Coordinating research across institutes.
 - o Determining research priorities and budgetary requirements.

- While there has been investment of resources by governments and IGOs, the reaction has been too slow and some actions, such as outbreak investigation, might not have been undertaken in the best way.
- The development of a pond or farm level case definition is key to surveillance and monitoring programs. However, the case definition needs to be based on a sufficient number of cases.
- Thorough investigation of outbreaks is important and requires an appropriate approach supported by appropriate skill sets such as epidemiology. Skills requirements may change over time as the investigation evolves.
 - The development of documents providing guidance on investigation procedures would be useful, particularly where non-specialists are involved.
- Rapid access to resources is required to support timely deployment of investigation or response teams.
 - o OIE and FAO already provide resources in some circumstances.
 - FAO can assist rapidly, but requires a formal approach to be made by national governments. NACA could approach FAO on behalf of member governments with their approval.
- Development of a regional response fund could encourage regional communication and cooperation at a senior level, and perhaps provide motivation to report disease issues earlier.
 - There is a need to support countries that do not have resources necessary to address a disease emergency.
 - A fund would need adequate governance mechanisms without restricting the ability to allocate resources quickly.
- There are some issues with coordination within countries, and it is important to engage with the correct contact points and ensure effective communication with IGOs.
- Availability of expertise in aquatic animal health is a concern, particularly with regards to histopathology and epidemiology. There is a need for succession planning as many available experts are close to retirement, and a need to provide training on an ongoing basis to maintain capacity.
- Reporting of disease through the current QAAD system is working and participation is improving. However there is sometimes a reluctance at the level of industry and government to share information, which can result in significant delays in responding to new diseases and slow recognition of disease severity.
 - There seems to be a gap between on-farm events and national/regional reporting.
- Accelerating the speed of information sharing would be beneficial, as information flow and recognition of disease severity takes time.
- The preparation of disease advisory cards as per IMNV and AHPNS examples is beneficial, but cards need to be circulated faster and more widely.
- NACA may be well placed to solicit information (e.g. pro forma situation reports) to support investigation of disease emergencies.

G. Workshop conclusions, recommendations and way forward

Case Definition: Development of a shrimp-level case definition for AHPNS by Prof Lightner is a breakthrough that will help direct and progress future research on this distinctive disease as opposed to other varied causes of early mortalities often seen in poorly managed farms. It is strongly suggested this case definition be considered as essential for all future epidemiological studies, outbreak investigations and management, diagnosis and laboratory-based research to discover the cause of AHPNS.

Presumptive Diagnosis: Gross clinical signs of AHPNS have been more or less consistent and it is suggested that they be used at the farm/pond level for presumptive diagnosis for confirmation of animal-level case definition histopathology. It was recommended that NACA develop a disease card with case definitions and appropriate pictures and disseminate this widely across member countries to increase awareness and support surveillance efforts.

Harmonization: Rigorous use of the animal-level and pond-level case definitions would enable direct comparison of data across AHPNS-affected countries, and also help to better describe new suspect cases in AHPNS-affected countries and unaffected countries potentially at risk.

Diagnosis: AHPNS pathology, in particular the progression of lesions from proximal to distal regions of the hepatopancreas in the absence of pathogens is suggestive of a toxic etiology, while the nature of its spread is suggestive of infectious etiology. At this stage, the primary cause is unknown, and the possibility of an infectious agent and/or toxin cannot be discounted. In view of this, research efforts should focus on all possible causes of AHPNS and on confirmation through robust challenge studies.

Epidemiology and Risk Factors: The consultation recognized that robust epidemiological studies have not been conducted so far in any country, even though a considerable amount of primary and secondary data have been gathered and preliminary epidemiological methods applied to identify potential risk factors. The consultation strongly recommended that a regionally-coordinated (e.g. by NACA, OIE Collaborating Centre ERAAD) epidemiological study be undertaken to better understand risk factors and disease spread so as to develop predictive models.

Capacity Building: The consultation recognized that the availability of all-round expertise (e.g. Prof Don Lightner and Prof Tim Flegel) to deal with emerging disease situations in the region will decrease as senior people retire. The need for succession planning and developing necessary skill sets and expertise to respond to disease emergencies should be taken up on high priority and NACA has agreed to continue a process of consultation with experts as part of a wider updating review of present and future capacities to provide appropriate responses as suggested by the Consultation. At the national and regional levels, expertise in

shrimp disease outbreak investigation, epidemiology and histopathology should be further developed and strengthened.

Local, National and Regional Response mechanisms and increased effort in capturing lessons learned: e.g. Better Organized and Coordinated Research: It was agreed in the workshop discussions based on the approaches taken by different AHPNS affected countries that it is becoming clear that each country and often separate responsible organizations in each country are developing responses and spending separate budgets on identifying key issues and there is limited information exchange and coordination both within and amongst affected countries. More effective pooling, particularly of human and financial resources within countries and regionally through mechanisms for both national and regional coordination can be improved and making more effective use of regional bodies such as NACA could result in more cost effective outputs and outcomes. Such approaches could also create wider consensus based thinking incorporating the best scientific approach to follow and the more effective team delivery mechanisms. For example, oversight could be provided by regional/international experts via more broadly based steering Committee approaches. Overall deliverables could be monitored and knowledge generated more effectively and shared amongst all members.

Knowledge Sharing and Communication: Communication and information sharing was recognized as very important constraint in terms of more effective responses to new/emerging diseases. It was suggested that NACA orchestrate a community dialogue hub for AHPNS for all researchers to share experiences (web-based, List-serve, Wiki, Facebook etc.), seek to host biannual meetings for researchers and other key stakeholders to share experiences and research outputs, as well as providing a platform for simple steps such as promoting the wider exchange of key research materials and exchange of histopathology slides.

Regional Emergency Fund: Considering the importance of ready access to funds to rapidly respond to disease emergencies, it was suggested that NACA and its partners seek to develop a community emergency fund mechanism that can be accessed by all member countries in the face of an aquatic animal disease emergency. Such funds could be used for fielding a rapid emergency mission to affected countries, commission a systematic outbreak investigation and for developing project/funding proposals to address the emergency. NACA Asia Regional Advisory Group on aquatic animal health and the NACA Governing Council could provide the overseeing and monitoring role for operation of such an emergency fund.

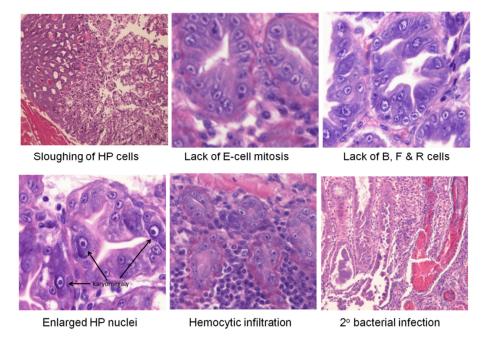
Annex 1: Disease Advisory

DISEASE ADVISORY

Asia Regional Aquatic Animal Health Programme

Early Mortality Syndrome (EMS)/Acute Hepatopancreatic Necrosis Syndrome (AHPNS): An emerging threat in the Asian shrimp industry

Eduardo M. Leaño and C.V. Mohan NACA, Bangkok, Thailand


The Asia-Pacific region, being the top producer of aquaculture products in the world, is continuously beset by emerging aquatic animal disease problems causing high mortalities and economic losses among small farmers as well as commercial producers. Over the last couple of decades, several diseases (e.g. luminous vibriosis, white spot syndrome, yellowhead disease, Taura syndrome) have caused significant devastation in the shrimp aquaculture of the region, causing the collapse of some industries (e.g. *Penaeus monodon*). Recently, a new/emerging disease known as early mortality syndrome (EMS) in shrimp (also termed acute hepatopancreatic necrosis syndrome or AHPNS) has been reported to cause significant losses among shrimp farmers in China (2009), Vietnam (2010) and Malaysia (2011). It was also reported to affect shrimp in the eastern Gulf of Thailand (Flegel, 2012).

The disease affects both *P. monodon* and *P. vannamei* and is characterized by mass mortalities (reaching up to 100% in some cases) during the first 20-30 days of culture (post-stocking in grow-out ponds). Clinical signs observed include slow growth, corkscrew swimming, loose shells, as well as pale coloration. Affected shrimp also consistently show an abnormal hepatopancreas (shrunken, small, swollen or discouloured). The primary pathogen (considering the disease is infectious) has not been identified, while the presence of some microbes including *Vibrio*, microsporidians and nematode has been observed in some samples. Lightner et al. (2012) described the pathological and etiological details of this disease. Histological examination showed that the effects of EMS in both *P. monodon* and *P. vannamei* appear to be limited to the hepatopancreas (HP) and show the following pathology:

- 1) Lack of mitotic activity in generative E cells of the HP;
- 2) Dysfunction of central hepatopancreatic B, F and R cells;
- 3) Prominent karyomegaly and massive sloughing of central HP tubule epithelial cells;
- 4) Terminal stages including massive intertubular hemocytic aggregation followed by secondary bacterial infections.

Similar histopathological results were obtained by Prachumwat et al. (2012) on Thai samples of *P. vannamei* collected from Chantaburi and Rayong provinces in late 2011 and early 2012 (Figure 1). The progressive dysfunction of the HP results from lesions that reflect degeneration and dysfunction of the tubule epithelial cells that progress from proximal to distal ends of HP tubules. This degenerative pathology of HP is highly suggestive of a toxic etiology, but anecdotal information suggests that disease spread patterns may be consistent with an infectious agent.

In China, the occurrence of EMS in 2009 was initially ignored by most farmers. But in 2011, outbreaks became more serious especially in farms with culture history of more than 5 years and those closer to the sea using very saline water of 20 (Panakorn, 2012). Shrimp farming in Hainan, Guangdong, Fujian and Guangxi suffered during the first half of 2011 with almost 80% losses

Figure 1. Histopathology of *Penaeus vannamei* hepatopancreas from Thailand affected by EMS/AHPNS. Photos courtesy of T.W. Flegel.

In Vietnam, the disease has been observed since 2010 but the most widespread devastation due to EMS has only been reported since March 2011 in the Mekong Delta (South Vietnam). It affects the main shrimp production areas of Tien Gang, Ben Tre, Kien Giang, Soc Trang, Bac Lieu and Ca Mau provinces with a total shrimp pond area of around 98,000 hectares. In June 2011, unprecedented losses in *P. monodon* were reported in 11,000 ha of shrimp farms in Bac Lieu, 6,200 ha in Tra Vinh (total of 330 million shrimp have died causing a loss of over VND12 billion), and 20,000 ha in Soc Trang (causing VND1.5 trillion in losses) (Mooney, 2012).

In Malaysia, EMS was first reported in mid-2010 in the east coast of peninsular states of Pahang and Johor. The outbreaks of EMS resulted in the significant drop in *P. vannamei* production, from 70,000 mt in 2010 to 40,000 mt in 2011. Production for 2012 (up to May) is only 30,000 mt and worse is expected to come as unconfirmed reports on EMS outbreaks in the states of Sabah and Sarawak came in April 2012.

So far no potential causative pathogen has been found and possible etiologies include toxins (biotic or abiotic), bacteria and viruses (NACA-FAO 2011). Nonetheless, the spread of the disease and its devastating effect in the shrimp industry of the countries affected so far, will require proper contingency planning in other countries in the region, especially in *P. vannamei* culture which is commonly cultivated at present in many Southeast Asian countries. Added to this is the standing threat of infections myonecrosis (IMN) on *P. vannamei* culture, which is now somehow contained within Indonesia. Rumors of disease outbreaks caused by IMNV from other countries in Asia have so far been false (Senapin et al., 2011). With Vietnam suffering the greatest loss due to EMS outbreak, the Food and Agriculture Organization of the United Nations (FAO) undertook an emergency mission in 2011 to assess the disease situation in the country, in collaboration with national as well as international shrimp health experts. As a follow-up on this emergency mission, FAO also developed a national TCP on emergency assistance to control the spread of this shrimp disease. Implementation of the national TCP in Vietnam has commenced in April 2012.

Identifying the primary cause of the disease is necessary, but while this information is still not yet available, increased disease awareness and preparedness should be implemented by every shrimp-producing country in the region. Considering the great economic loss that EMS will cause in the region's shrimp industry, ways of preventing the spread and/or occurrence of this disease should be formulated by

concerned experts, officials and other regulatory bodies. Farmers, on the other hand, should also properly cooperate with the concerned agencies by promptly reporting any suspected mortalities among cultured shrimp that appear to be similar to the clinical description of EMS/AHPNS. It is important that histological examination be carried out to confirm that suspected occurrences fit the AHPNS case definition devised by Dr. Lightner.

The purpose of this short communication is to inform all NACA members of the emerging threat and request respective Competent Authorities (CA) and concerned stakeholders to increase surveillance and reporting efforts. Only through surveillance, early response, contingency planning and disease preparedness, can countries minimize the impact of the impending threat. NACA Secretariat will approach the CA of the four member governments currently affected by EMS to put up a multi-disciplinary team of experts to understand more about the disease and develop contingency measures to prevent its further spread in the region.

NACA will greatly appreciate receiving any relevant information pertaining to EMS/AHPNS from all member countries in the region. Information can be sent by e-mail to the authors at <u>eduardo@enaca.org</u> and <u>mohan@enaca.org</u>.

References:

- Flegel, T.W. 2012. Historic emergence, impact and current status of shrimp pathogens in Asia. Journal of Invertebrate Pathology 110:166-173.
- Lightner, DV, Redman, RM, Pantoja, CR, Noble, BI, Tran, L. 2012. Early mortality syndrome affects shrimp in Asia. Global Aquaculture Advocate, January/February 2012:40.
- Mooney, A. 2012. An emerging shrimp disease in Vietnam, microsporidiosis or liver disease? Available at: <u>http://aquatichealth.net/issue/38607</u>.
- NACA-FAO 2011. Quarterly Aquatic Animal Disease report (Asia and Pacific Region), 2011/2, April-June 2011. NACA, Bangkok, Thailand.
- Panakorn, S. 2012. Opinion article: more on early mortality syndrome in shrimp. Aqua Culture Asia Pacific, Volume 8 No. 1: 8-10.
- Anuparp Prachumwat, A., Thitamadee, S., Sriurairatana, S., Chuchird, N., Limsuwan, C. Jantratit, W., Chaiyapechara, S., Flegel, T.W. 2012. Shotgun sequencing of bacteria from AHPNS, a new shrimp disease threat for Thailand. Poster, National Institute for Aquaculture Biotechnology, Mahidol University, Bangkok, Thailand (Poster available for free download at www.enaca.org)
- Senapin, S., Phiwsaiya, K., Gangnonngiw, W., Flegel, T.W. 2011. False rumours of disease outbreaks caused by infectious myonecrosis virus (IMNV) in the whiteleg shrimp in Asia. Journal of Negative Results in BioMedicine. 10: 10

Annex 2: Prospectus

Australian Government

Department of Agriculture, Fisheries and Forestry

ASIA PACIFIC EMERGENCY REGIONAL CONSULTATION ON SHRIMP EARLY MORTALITY SYNDROME (EMS)/ ACUTE HEPATOPANCREATIC NECROSIS SYNDROME (AHPNS)

9-10 August 2012 Bangkok, Thailand

Prospectus

Rationale

The Asia-Pacific region, being the top producer of aquaculture products in the world, is continuously beset by emerging aquatic animal disease problems causing high mortalities and economic losses among small farmers as well as commercial producers. Recently, a new/emerging disease known as early mortality syndrome (EMS) in shrimp (also termed acute hepatopancreatic necrosis syndrome or AHPNS) has been reported to cause significant losses among shrimp farmers in China (2009), Vietnam (2010) and Malaysia (2011). It was also reported to affect shrimp in the eastern Gulf of Thailand (Flegel, 2012)¹. Outbreaks in Vietnam and Malaysia have caused severe economic losses and significantly lowered annual shrimp production.

The disease affects both *P. monodon* and *P. vannamei* and is characterized by mass mortalities (reaching up to 100% in some cases) during the first 20-30 days of culture (post-stocking in growout ponds). Clinical signs observed include slow growth, corkscrew swimming, loose shells, as well as pale coloration. Affected shrimp also consistently show an abnormal hepatopancreas (shrunken, small, swollen or discolored). The primary pathogen (considering the disease is infectious) has not been identified, while the presence of some microbes including *Vibrio*, microsporidians and nematode has been observed in some samples. Lightner et al. (2012)² described the pathological and etiological details of this disease. Histological examination showed that the effects of EMS in both *P. monodon* and *P. vannamei* appear to be limited to the hepatopancreas (HP) and show the following pathology:

- 1) Lack of mitotic activity in generative E cells of the HP;
- 2) Dysfunction of central hepatopancreatic B, F and R cells;

¹ Flegel, T.W. 2012. Historic emergence, impact and current status of shrimp pathogens in Asia. Journal of Invertebrate Pathology 110:166-173.

² Lightner, DV, Redman, RM, Pantoja, CR, Noble, BI, Tran, L. 2012. Early mortality syndrome affects shrimp in Asia. Global Aquaculture Advocate, January/February 2012:40.

- 3) Prominent karyomegaly and massive sloughing of central HP tubule epithelial cells;
- 4) Terminal stages including massive intertubular hemocytic aggregation followed by secondary bacterial infections.

So far no potential causative pathogen has been found and possible etiologies include toxins (biotic or abiotic), bacteria and viruses (NACA-FAO 2011)³. Nonetheless, the spread of the disease and its devastating effect in the shrimp industry of the countries affected so far, will require proper contingency planning in other countries in the region, especially in *P. vannamei* culture which is commonly cultivated at present in many Southeast Asian countries. Added to this is the standing threat of infections myonecrosis (IMN) on *P. vannamei* culture, which is now somehow contained within Indonesia. Rumors of disease outbreaks caused by IMNV from other countries in Asia have so far been false (Senapin et al., 2011)⁴.

Identifying the primary cause of the disease is necessary, but while this information is not yet available, increased disease awareness and preparedness should be implemented by every shrimp-producing country in the region. Considering the great economic loss that EMS will cause in the region's shrimp industry, ways of preventing the spread and/or occurrence of this disease should be formulated by concerned experts, officials and other regulatory bodies. Farmers, on the other hand, should also properly cooperate with the concerned agencies by promptly reporting any suspected mortalities among cultured shrimp that appear to be similar to the clinical description of EMS/AHPNS. It is important that histological examination be carried out to confirm that suspected occurrences fit the AHPNS case definition devised by Dr. Lightner.

Considering the seriousness of this emerging shrimp disease, NACA and DAFF are convening this regional consultation involving global experts, national participants representing the Competent Authority and lead research institutions, regional and international organizations and private sector with the following objectives.

Objectives

This regional consultation will:

- a) Provide an overview of the current disease and its spread, with emphasis on the threat that it poses in the shrimp industry of the region;
- b) Assess the economic effects of the disease: outbreaks in China, Vietnam, Malaysia and Thailand;
- c) Identify any similar occurrences in other countries in the region;
- d) Develop a field level disease card and case definition as easy reference in monitoring the occurrence of the disease;
- e) Formulate a regional action plan improved disease surveillance and reporting, and contingency measures to contain and prevent further spread of the disease;
- f) Develop or plan collaborative research on EMS/AHPNS, inter-regionally and internationally, to identify the primary causative agent, develop preventive measures, etc.; and,
- g) Formulate other regulatory measures for overall management of the disease.

³ NACA-FAO 2011. Quarterly Aquatic Animal Disease report (Asia and Pacific Region), 2011/2, April-June 2011. NACA, Bangkok, Thailand.

⁴ Senapin, S., Phiwsaiya, K., Gangnonngiw, W., Flegel, T.W. 2011. False rumours of disease outbreaks caused by infectious myonecrosis virus (IMNV) in the whiteleg shrimp in Asia. Journal of Negative Results in BioMedicine. 10: 10

Participants

Participants will be representatives from shrimp producing countries of the region including:

- NACA member countries
- ASEAN member countries
- Private sector

International and regional experts, including OIE experts, will be invited to make presentations and facilitate series of discussions pertaining to the disease.

Process

The workshop will include detailed lecture on the description of the new disease including gross signs, histopathological characteristics, production losses, suspected pathogens/causative agent, etc. An open discussion will follow the lecture so that the participants will have more insights on the importance of the disease. This will be followed by presentations on disease outbreak cases in China, Vietnam, Malaysia and Thailand. Similar cases observed in other countries (if any) will then be tackled in the discussion/forum.

Group discussions on various key issues will be facilitated by experts to develop recommendations and follow up actions. A disease card will be developed for wider dissemination as first-hand reference for the disease. Formulation of important regulations to contain and prevent the spread of the disease will be of high importance. Finally, collaborative research will be planned to pin point the primary causative agent of the disease, which is necessary for the development of prevention and control measures.

Expected Outputs

At the end of the two-day workshop, the following outputs are envisaged:

- Increased awareness on EMS/AHPNS;
- Field level Disease Card and case definition for EMS/AHPNS developed for publication and dissemination to shrimp-producing sectors in the region;
- Development of a template for outbreak investigation
- Regional action plan on emergency response and contingency planning developed;
- Surveillance, monitoring and reporting of EMS/AHPNS outbreaks improved;
- Collaborative research to identify the primary causative agent and development of preventive and control measures planned/developed.

Information Dissemination

Workshop outputs will be circulated to national stakeholders, regional and international organizations and made available on NACA website for free download

Annex 3: List of participants

Emergency Regional Consultation on EMS/AHPNS 9-10 Aug 2012, Bangkok, Thailand

List of Participants

A. RESOURCE EXPERTS	
AUSTRALIA	
Ingo Ernst	Tel No: +61 2 6272 5615
Director, Aquatic Animal Health	Fax No: +61 2 6272 3399
Department of Agriculture, Fisheries and Forestry	Email: <u>ingo.ernst@daff.gov.au</u>
GPO Box 858	
Canberra ACT 2601	
Jeff Cowley	
CSIRO Livestock Industries	Tel No: +
Australian Animal Health Laboratory	Fax No: +
Victoria	Email: Jeff.Cowley@csiro.au
Australia	
Peter Walker	
CSIRO Livestock Industries	Tel No: +
Australian Animal Health Laboratory	Fax No: +
Victoria	Email: Peter.Walker@csiro.au
Australia	
BRUNEI	
Ms Celia Pitogo	
Director of Aquatic Animal Health	Tel No: + 6738196628(M)
Integrated Aquaculture International LLC	Fax No: +
1st Floor No. 6 Block A Bangunan Lim Seng Kok,	Email: <u>celia.pitogo@fulbrightmail.org</u>
Simpang 628, Jalan Tutong, Bandar Seri Begawan	
BF120 Negara Brunei Darussalam	
CANADA	
lan Gardner	
Professor of Epidemiology	Tel No: +1 902 620 5059
Atlantic Veterinary College,	Fax No: + 1 902 620 5053
University of Prince EdwardIsland	Email: iagardner@upei.ca
Univ. of Prince Edward Island, 550 University Ave	
Charlottetown, PE, C1A 4P3, Canada	
Larry Hammell	
Professor and Co-Director, OIE Collaborating Centre	Tel No: +1 902 566 0728
OIE CC ERAAAD, Atlantic Veterinary College,	Fax No: +1 902 620 5053
Univ of PEI Dept of Health Management, AVC,	Email: Lhammell@upei.ca
UPEI, 550 University Ave	
Charlottetown, PE, Canada C1A 4P3	
CHINA	
Huang Jie	
Vice President	Tel No: + 86 13805421513
Aquatic Animal Health Standards Commission, OIE	Fax No: + 86 8581 1514
Yellow Sea Fisheries Research Institute	Email: huangjie@ysfri.ac.cn
Chinese Academy of Fishery Sciences	
#106 Nanjing Road, Qingdao, SD 266071, China	

Ms Victoria Aldez	Tel No:	+ 34 6064 35764
Director Shrimp Health	Fax No:	
Pescanova	Email:	valday@pescanova.es
Portal del Angel 3-5, 080010 Barcelona Spain		
THAILAND		
Timothy Flegel		
Shrimp Disease Expert	Tel No:	+
Mahidol University	Fax No:	
Bangkok Thailand	Email:	tim.flegel@gmail.com
Matt Briggs Director	Tel No:	+ 66 87 808 3544
Vannamei 101 Co. Ltd. 112/13 Moo 1, Paklok, Thalang	Fax No:	
Phuket 83110 Thailand	Email:	mattbriggs101@gmail.com
Chalor Limsuwan		
Faculty of Fisheries	Tel No:	+ 66 2 9/0 5695/+66 81 67/ 1076
Kasetsart University		+ 66 2 940 5695/+66 81 674 1876 + 66 2 940 5695
50 Phaholyothin Road, Chatuchak,	Email:	thailandshrimp@yahoo.co.th
Bangkok, 10900	EIIIdii.	ເກລາເລົ້າບຣາກ ແມ່ນເພິ່ງສາເບີບ.co.cl
Ms Supranee Chinabut		
Senior Advisor to the Department of Fisheries	Tel No:	+ 66 85 070 6473
Department of Fisheries	Fax No:	
24/3 Soi Areesamphan 5	Email:	supraneecb@yahoo.com
Bamgkok 10400, Thailand		
UK		
Jason Weeks		
APEG Program Director, CEFAS	Tel No:	
Weymouth Laboratory, Barrack Road, The Nothe,		+ 44 0 1305 206601
Weymouth, Dorset, UK DT4 8UB	Email:	jason.weeks@cefas.co.uk
USA		
Don Lightner		
Professor	Tel No:	+
University of Arizona	Fax No:	+
Department of Veterinary Science and Microbiology	Email:	dvl@u.arizona.edu
University of Arizona, Tucson 85721 USA		
VIETNAM		
Flavio Corsin		
Program Officer	Tel No:	+
IDH-Sustainable Trade	Fax No:	+
Hanoi	Email:	Corsin@idhsustainabletrade.com
Vietnam		

B. GOVERNMENTS		
BANGLADESH		
Nittya Ranjan Biswas		
Principal scientific officer	Tel No:	+88 02 9569943/88 01711 066675
Department of fisheries, bangladesh	Fax No:	
Matshya bhaban, ramna, dhaka-1000	Email:	psofiqcdof@gmail.com
Bangladesh	2	pooridoner C 9
BRUNIE		
Ms Wanidawati Tamat	TIN	
Fisheries Officer	Tel No:	
Head of Aquatic Animal Health Services Centre	Fax No:	
Department of Fisheries, Ministry of Industry and Primary	Email:	<u>wanida998@yahoo.com</u>
Resources, Brunei Darussalam		
Jalan Menteri Besar, BB3910, Brunei Darussalam		
Ms Hajah Rosinah Haji Yussof Sanior Fisharias Officar	Tol No.	
Senior Fisheries Officer	Tel No:	
Head of Division Aquaculture Research and Management		+673 2382069
Department of Fisheries, Ministry of Industry and Primary	Email:	rosinah1311@yahoo.com
Resources, Brunei Darussalam		
Jalan Menteri Besar, BB3910, Brunei Darussalam		
CAMBODIA		
Chheng Phen		
Acting Director		
Inland Fisheries Research and Development Institute	Tel No:	+855 12875872
(IFReDI), Fisheries Administration	Fax No:	+
# 186, Norodom Blvd., P.O. Box 835, Phnom Penh,	Email:	chhengp@yahoo.com
CAMBODIA		
CHINA		
BingWen Xi	Tel No:	+ 0086 0510 85556566
Freshwater Fisheries Research Center, CAFS	Fax No:	+ 0086 0510 85556566
Shanshui East road, No. 9,	Email:	xibw@ffrc.cn
Wuxi, Jiangsu Province, 214081, China		
INDIA		
Bhaskar Manimaran		
Director		
Coastal Aquaculture Authority		
Ministry of Agriculture	Tel No:	+
Govt.of India	Fax No:	+
II Floor, Shastri Bhavan Annexe	Email:	directorcaa@gmail.com
26 Haddows Road Nugambakkam		
Chennai, 600 006. India		
Shankar Alavandi		
Senior Scientist		
Central Institute of Brackishwater Aquaculture	Tel No:	+91 44 24618817
	Fax No:	+91 44 24610311
#75, Santhome High Road, RA Puram,	Tax NO.	

INDONESIA		
Muhammad Murdjani		
Fish Desease Specialist		
Directorate General of Aquaculture,	Tel No:	+ 6221 789 0552
MMAF Republic of Indonesia	Fax No:	+ 6221 7883 5853
Jalan Harsono RM No. 3 Ragunan, Pasar Minggu,	Email:	m.murdjani@gmail.com
Jakarta Selatan		
Coco Kokarkin		
Head	Tel No:	
Brackishwater Development Centre of Ujung Batee Centre	Fax No:	+ +
Jl. Krueng Raya Km. 46 Banda Aceh NANGROE ACEH	Email:	<pre>- coco_kokarkin@yahoo.com.au</pre>
DARUSSALAM	Ellidii.	COCO_KOKarkin@yanoo.com.au
Indonesia		
Bambang Hanggono		
Brackishwater Aquaculture Development Center Situbondo		+ 62 815 6896 231
PO. BOX 5 Panarukan Situbondo – Jawa Timur		+ 62 338 673328
68351 - Indonesia	Email:	bambanghanggono@yahoo.com
Budy Prayitno		
Faculty of Fisheries and Marine Science	Tel No:	+
Diponegoro University	Fax No:	
Jl. Prof. Sudarto SH, Kampus Tembalang,	Email:	
Semarang 50275, Indonesia	Lindin	
Culture de		
Sukenda	Tel No:	+
Faculty of Fisheries and Marine Science,	Fax No:	+
Bogor Agriculture University, Kampus Dramaga,	Email:	
Bogor, West Java, Indonesia.		
MALAYSIA		
Raihan Sheikh Hj Ahmad	Tel No:	+
Head, Fish Health Section, Fisheries Bosecurity Division	Fax No:	
Department of Fisheries, Malaysia	Email:	T Lycopene 2005@yahoo.com.my
Putrajaya	Lindii.	Lycopene_2005@yanoo.com.my
Ms K Beng Chu		
Research Officer, Fisheries Research Institute,		
Department of Fisheries Malaysia	Tel No:	+ 604 6263922
National Fish Health Research Centre (NaFisH),	Fax No:	+ 604 6263977
FRI NaFisH, Fisheries Research Institute,	Email:	kbengchu@yahoo.com
Department of Fisheries Malaysia		· · · · · · · · · · · · · · · · · · ·
11960 Batu Maung, Penang, Malaysia		
MYANMAR		
Куаж Куаж		
	Tel No:	+
	_	
Department of Fisheries Yangoon Myanmar	Fax No: Email:	+ Kyaw.72@gmail.com

NEPAL		
Jay Kishore Mandal		
Chief	Tel No:	+ 977 1 4385854
Central Fisheries Laboratory	Fax No:	+ 977 1 4385854
Central Fisheries Building	Email:	mandaljay kishore@yahoo.com
alaju, Kathmandu, Nepal		
PHILIPPINES		
oselito Somga	Tal Mar	
ish Health Section	Tel No:	
BFAR	Fax No:	
Quqzon City, Philippines	Email:	josomga@yahoo.com
INGAPORE		
hong Shin Min		
/eterinarian, animal health laboratories	Tel No:	+65 6316 5165
Agri-food & Veterinary Authority of Singapore (AVA)	Fax No:	+65 6316 1090
Animal & plant health centre	Email:	CHONG_Shin_Min@ava.gov.sg
perahu road, Singapore 718827		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Is Anna Wong		
Assistant director, surveillance & inspection	Tel No:	+ 65 6795 2880
Agri-food & Veterinary Authority of Singapore (AVA)	Fax No:	+
/eterinary public health centre	Email:	
0 perahu road, Singapore 718837		
GRI LANKA		
Ms R A Geetha Ramani	Tel No:	+ 94112958213
/eterinary Investigation Officer	Fax No:	
Department of Animal Production & Health	Email:	vic_welisara@yahoo.com
/eterinary Investigation Centre, Welisara, Ragama,		
ri Lanka		
Ms A S L E Corea		
Research Officer	Tel No:	+ 94112521005
National aquatic resources research and	Fax No:	
Development Agency	Email:	aslec1999@gmail.com
crow Island, Colombo15. Sri Lanka		
HAILAND		
Somkiat Kanchanakhan		
ishery Biologist Senior Professional		
AHRI, DOF	Tel No:	+ 662 579 4122
nland Aquatic Animal Health Research Institute (AAHRI)	Fax No:	
Department of Fisheries, Jatuchak, Bangkok 10900	Email:	kanchanakhan@yahoo.com
hailand		
As Jiraporn Kasornchandra		
Expert on Fish Disease		
Department of Fisheries	Tel No:	+ 662 940 6529
6th Floor Chulabhorn Building	Fax No:	
-		kasarni@gmail.com
Department of Fisheries	Email:	kasornj@gmail.com

Chaiwud Sudthongkong Department of Fisheries Bangkok Thailand	Tel No: + Fax No: + Email:
Ms Janejit Kongkamnerd Coastal Aquatic Animal Health Research Institute Department of Fisheries 130/2 Moo 8, Pawong, Muang, Songkhla, Thailand 90100	Tel No: +6674335244 Fax No: +6674335243 Email: janejitk@yahoo.com
Ms Chutima Khomvilai Fisheries Biologist Department of Fisheries Kaset-Klang, Chatuchak, Bangkok, Thailand	Tel No: +662 562 0552 Fax No: +662 562 0552 Email: chutimakk@gmail.com
VIETNAM	
Le Van Khoa Department of Animal Health Hanoi Vietnam	Tel No: + Fax No: + Email: lvkhoa@dah.gov.vn
Tuan Pham Anh Deputy Director General Department of Fisheries Hanoi Vietnam	Tel No: + Fax No: + Email: tuanpa.khcn@mard.gov.vn
Nguyen Van Hao Director RIA 2 Ho Chi Minh City Vietnam	Tel No: + Fax No: + Email: haoria2@hcm.vnn.vn
Ms Phan Thi Van Director Research Institute for Aquaculture No.1 Dinh Bang ,Tu Son Town Bac Ninh Province, Viet Nam	Tel No: +84 04 38780102 Fax No: +84 04 38273070 Email: phanvan@ria1.org
Ms Dang Thi Hoang Oanh Cantho University, Viet Nam College of Aquaculture and Fisheries, Can Tho University Campus 2, 3-2 Street, Cantho City, VietNam	Tel No: +84 7103 834532 Fax No: +84 7103 830323 Email: dthoanh@ctu.edu.vn

C. ORGANIZATIONS		
3SFF, Bangladesh		
Mahmudul Karim		
Executive Director	Tel No:	+880 2 8417731/8801711 590366
Bangladesh Shrimp and Fish Foundation	Fax No:	+880 2 8412709
House# 465, Road# 8 East, DOHS Baridhara	Email:	dr_mahmudul_karim@yahoo.com
Dhaka 1206, Bangladesh		
FAO HQ Rome		
Ms Melba Reantaso		
Aquaculture Officer		
Fisheries and Aquaculture Department	Tel No:	
Food and Agriculture Organization of the UN	Fax No:	
Viale delle Terme di Caracalla	Email:	Melba.Reantaso@fao.org
00100 Rome, ITALY		
AO RAP Bangkok		
Miao Weimin	T-LAL	
Aquaculture Officer		+66 2 6974119/66 81 8691843
FAO Regional Office for Asia and the Pacific		+66 2 6974445
AO, 39 Phra Atit Road, Bangkok, Thailand 10200	Email:	weimin.miao@fao.org
MPEDA, India		
Dilip Kumar Biswas		
MPEDA, SRC (Aq)		
P-161/1, VIP ROAD	Tel No:	+
BRD FLOOR, ULTADANGA	Fax No:	+
KOLKATA – 700054	Email:	kolmpeda@bsnl.in
ndia		
DIE Bangkok		
Alexandre Bouchot		
c/o DLD, 69/1 Phaya Thai Road,	Tel No:	+
Ratchathewi, 10400 Bangkok, Thailand	Fax No:	
,	Email:	a.bouchot@oie.int
Karanvir Kukeja	Tel No:	+66 2 6534864
c/o DLD, 69/1 Phaya Thai Road,	Fax No:	+662 6534904
Ratchathewi, 10400 Bangkok, Thailand	Email:	k.kukreja@oie.int
DIE Tokyo		
Ms Hnin Thidar Myint		
Regional Veterinary Officer	Tel No:	+85 0 3 5980 1931
World Organisation for Animal Health (OIE)	Fax No:	+85 0 3 5805 1934
Food Science Building 5F, The University of Tokyo	Email:	hnin.thidar@oie.int

RGCA, India

Biju Narayanan Assistant Project Manager Rajiv Gandhi Centre for Aquaculture (RGCA)MPEDA, Govt. of India 3/197, Poompuhar Road, Karaimedu, Sattanathapuram –p.o.,Sirkali Nagapattinam Dt., Tamil Nadu, India

Harikrishnan Dinesh Kumar MANAGER (NBC), Domestication of Tiger Shrimp Project, Rajiv Gandhi Centre for Aquaculture (RGCA), 3 / 197, Poompuhar Road, Karaimedu Village, Sattanathapuram – 609 109, Sirkali Tk., Nagapattinam Dt., Tamil Nadu, India

 Tel No:
 +91 4364 265214, 265200

 Fax No:
 +91 4364 265219

 Email:
 vnbiju@gmail.com

Tel No: +91 9933 263459 Fax No: + Email: <u>dinsu1561@gmail.com</u>

SEAFDEC-AQD

Edgar Amar Head, Fish Health Section SEAFDEC Aquaculture Department Tigbauan, Iloilo Philippines

Tel No: + Fax No: + Email: eamar@aqd.seafdec.org.ph

WFC, Dhaka

Manjural Karim The WorldFish Center Bangladesh and South Asia Office Dhaka 1213 Bangladesh

Tel No: + Fax No: + Email: m.karim@cgxchange.org

	Mailing A	ddress
of Fisheries	PO Box 10	040
	Kasetsart	Post Office
00 Thailand	Bangkok 1	10903, Thailand
	Fax No	(66-2) 561 1727
Director General		ambekar.eknath@enaca.org
R & D Manager		mohan@enaca.org
Aquatic Animal Health Programm	ne Coordinat	tor eduardo@enaca.org
Communications Manager		simon.wilkinson@enaca.org
NACA Senior Fellow		fbdavy@enaca.org
Education & Training Program M	anager	yuan@enaca.org
	00 Thailand Director General R & D Manager Aquatic Animal Health Programn Communications Manager NACA Senior Fellow	of Fisheries PO Box 10 Kasetsart D0 Thailand Bangkok : Fax No Director General R & D Manager Aquatic Animal Health Programme Coordina Communications Manager

Alltech		
Fuci Guo	Tel No:	+
	Fax No:	
	Email:	fugo@alltech.com
Bayer, Thailand		
Jan Koesling		
Regional Business Development Manager-Aquaculture	Tel No:	+662 232 7000
Bayer Thai Co., Ltd.	Fax No:	+662 267 2804
130/1 North Sathon Road, Silom,	Email:	jan.koesling@bayer.com
Bangrak, Bangkok 10500 Thailand		
CARGILL		
Dan Fegan		
Regional Technical Manager	Tel No:	+66 84 874 8066
18th Fl., Tower 3, Sindhorn Building	Fax No:	+66 2 263 2950
Wittayu Rd., Lumpini	Email:	Daniel_Fegan@cargill.com
Bangkok 10330, Thailand		
CP		
Robins McIntosh		
Senior Vice President	Tel No:	+662 625 8250-1
Charoen Pokphand Food (Public) CO.,LTD 313 CP Tower 1, 27th floor Silom Road Silom	Fax No:	+662 638 2254
Bangrak Bangkok 10500	Email:	robmc101@yahoo.com
Rapeepat Mavichak		
General Manager	Tel No:	+66 34839609-20 ext. 135
Charoen Pokphand Food (Public) CO.,LTD	Fax No:	
99 M.9 Banbueng-Klaeng Road	Email:	
T. Nong I Roon A. Banbueng		
Chonburi 20220, Thailand		
INVE, THAILAND		
Dumrongphol Yolprapa		
Regulatory Affairs Manager	Tel No:	
INVE (THAILAND) Ltd. (Branch office)		+662 960 0361
471 Bond street Rd. Tambon BangPood	Email:	y.dumrongphol@inveaquaculture.com
Amphoe Pakkred, Nontaburi 11120		
Olivier Decamp		
Product Manager Health		
INVE Aquaculture	Tel No:	
471 Bond Street		+662 960 0200
Tambon Bangpood, Amphur Pakkred	Email:	o.decamp@inveaquaculture.com
11120 Nonthaburi		

Ooi Ei Lin	
Aqua R&D Manager	Tel No: +65 8282 3675
Novus International	Fax No: +
Novus Aqua Research Center	Email: eilin.Ooi@novusint.com
Quarter 6, Linh Trung Ward,	
Thu Duc District,Ho Chi Minh City, Vietnam	
PHARMAQ	
Kjersti Gravningen	
Director, PHARMAQ Asia	
Harbitzallen 5	Tel No: +
PO Box 267, Skoyen	Fax No: +
N-0213, Oslo	Email: kjersti.gravningen@pharmaq.no
Norway	Email. Kjersu gravningen @pharmaq.no
PIFZER	
Kamphon Wongwilawan	
Business Development Lead	Tel No: +
Pfizer (Thailand) Limited	Fax No: +
Floor 36,37,38 and 42United Center Building 323 Silom	Email: kamphon.wongwilawan@pfizer.com
Road, Silom , Bangrak,10500, Thailand	
Ms Supanee Urairong	
Technical Assistant Manager	Tel No: +66 84 6154351
Pfizer (Thailand) Limited	Fax No: +
Floors 36, 37, 38 and 42 United Center Building 323 Silom	Email: Supanee.Urairong@pfizer.com
Road, Silom , Bangrak, Bangkok 10500 Thailand	
E. POST GRADUATE RESEARCHERS	
Chumporn Soowannayan	Tel No: + Fax No: +
	Email: csoowannayan@gmail.com
Siripong Thitamadee	
Kallaya Srituniyalucksana	
Anupharp Prachumwat	
Ha Thanh Dong	
Long Ngoc Pham	

Annex 4: Provisional Agenda

Australian Government

Department of Agriculture, Fisheries and Forestry

ASIA PACIFIC EMERGENCY REGIONAL CONSULTATION ON SHRIMP EARLY MORTALITY SYNDROME (EMS)/ ACUTE HEPATOPANCREATIC NECROSIS SYNDROME (AHPNS)

9-10 August 2012 Bangkok, Thailand

Provisional Agenda

8 August 2012 - Arrival of Participants			
Day 1: Thurs	day, 9 August, 2012		
0830-0900h	Registration		
0900-0915h	Formal Opening Session		
	• Opening Welcome Remarks by Dr Ambekar Eknath, DG, NACA		
	• Opening Welcome Remarks by Dr Ingo Ernst, DAFF, Australia		
0915-1000h	Background, Objectives, Structure and Expected Outputs by Dr CV Mohan		
	(NACA) and Dr Ingo Ernst (DAFF)		
	Introduction of Participants		
	Announcements and Local Logistics		
	Group Photo		
	1000-1030h: Coffee Break		
	Moderators: Dr Ingo Ernst and Dr CV Mohan		
1030-1050h	Characterization, Distribution, Impacts and Case Definition		
	By Prof Don Lightner		
1050-1110h	Research Progress on Bacterial and Viral Causes of AHPNS		
	By Prof Tim Flegel		
1110-1130h	Q&A Session		
1130-1150h	Disease Emergence – Why and How?		
	Prof Peter Walker		
1150-1210h	Novel Methods for "Hunting for Ghost Viruses"		
	by Dr Jeff Cowley		
1210-1230h	Q&A Session		
	1230-1330h: Lunch Break		
1330-1350h	Epidemiology and Risk Factors-What We Know?		
	By Dr Flavio Corsin		
1350-1410h	Is EMS a Management Problem?		
	By Dr Matt Briggs		
1410-1430	Q&A Session		
1430-1450h	Experiences from Vietnam by National Team		

1450-1510h	Experiences from Chine by National Team				
	Experiences from China by National Team				
1510-1530h	Q&A Session				
1 (00, 1 (20)	1530-1600h: Coffee Break				
1600-1620h	Experiences from Thailand by National Team				
1620-1640h	Experiences from Malaysia by National Team				
1640-1700h	Q&A Session				
1700-1730h	Experiences from Other Countries (if any)				
1730-1800h	General Discussions and Wrap Up for the day				
1830-2000h	WORKSHOP DINNER				
Day 2: 10 Au					
	Moderators: Dr Jeff Cowley and Dr Ed Leano				
0900-0920h	One Month Mortality Syndrome-Revisiting an old story				
	by Dr Celia Pitogo				
0920-0940h	Management of EMS-What Works and What Does Not?				
	By Prof Chalor Limsuwan				
0940-1000h	Disease Preparedness-Theory and Practice. What Have We Learnt?				
	By Dr Ingo Ernst				
1000-1020h	Q&A Session				
1020-1030h	Group Discussion Themes and Expected Outputs				
	By Dr Ingo Ernst and Dr CV Mohan				
	1030-1045h: Coffee Break				
1045-1300h	Group 1: Current Knowledge, Knowledge Gaps and Research Priorities				
	Team: Dr Don Lightner, Dr Tim Flegel, Dr Huang Jie, Dr Jason Weeks				
	Group 2: Detection, Reporting and Surveillance				
	Team:, Dr Flavio Corsin, Dr Ian Gardner, Dr Jeff Cowley, Dr Celia Pitogo				
	Group 3: Biosecurity, Emergency Response and Disease Management				
	Team: Dr Larry Hammell, Dr Matt Briggs, Dr Victoria Alday, Dr Ed Leano				
	Group 4: Regional Disease Response				
	Team: Dr Ingo Ernst, Dr Brian Davy, Dr Peter Walker, Dr Supranee Chinabut				
	1300-1400h: Lunch Break				
	Moderator: Dr Supranee Chinabut and Dr Peter Walker				
1400-1530h	Presentations of Group Findings and Discussions				
1100 100011	1530-1600h: Coffee Break				
	Moderators: Dr Ambekar Eknath, Dr Ingo Ernst, Dr Tim Flegel, Dr Don				
	Lightner				
1600-1700h	Plenary Discussions, Recommendations and Follow up Actions				
1700-1730h	Closing Formalities				
1700-173011	Closing Remarks by Dr Ingo Ernst, DAFF, Australia				
11 4	Closing Remarks by Dr Ambekar Eknath, DG, NACA				
11 August, 2	012 – Departure of Participants				

Annex 5: AHPNS Technical Presentations

Background New/emerging disease Early mortality syndrome (EMS) in shrimp Also termed acute hepatopancreatic necrosis syndrome or AHPNS Reported to cause significant losses China (2009), Vietnam (2010), Malaysia (2011) and eastern Gulf of Thailand (2012) Affects both *P. monodon* and *P. vannamei*Characterized by significant mortalities during the first 20–30 days of culture (post–stocking in grow–out ponds)

Background

- Considerable research work done in the region and outside the region
- BUT, so far potential causative pathogen has NOT been described
- From the nature of spread, EMS appears to be infectious??
- NACA Asia Regional Advisory Group on aquatic animal health recognized EMS as an emerging problem in its 10th AGM in 2011 and called for increased surveillance and reporting from member governments in the region

EMS Regional Consultation 9-10 Aug 2012

EMS Regional Consultation 9-10 Aug 2012

Rationale

- Considering the importance of this emerging problem to EMS affected countries and countries that are potentially at risk
 - EMS disease advisory was sent to Competent Authorities and lead shrimp researchers of all member countries and widely disseminated
 - In addition, EMS circular sent to all governments, funding agencies and regional/international organizations seeking support to convene a regional consultation
- Considering the seriousness of the problem and its potential impact, DAFF Australia came forward to support this 2 day consultation

OIE is supporting participation of two OIE Experts

EMS Regional Consultation 9-10 Aug 2012

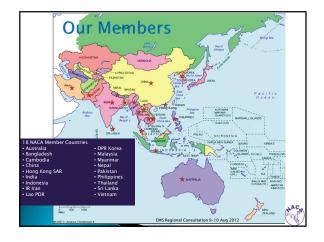
EMS Regional Consultation 9-10 Aug 2012

Primary Objectives

- Bringing together global experts, national participants representing the CA and lead research institutions, regional and international organizations and private sector
- Facilitating networking and information sharing for better understanding and dealing with EMS
- Documenting the current state of knowledge on EMS and lessons learned in dealing with disease emergencies at the national/regional levels
- > Agreeing on a regional action plan for dealing with future aquatic disease emergencies in the region

Specific Objectives

- Provide an overview of the current disease situation and its spread, with emphasis on the threat that it poses to the shrimp industry of the region
- Situation analysis of outbreaks in China, Vietnam, Malaysia and Thailand
- Identify any similar occurrences in other countries in the region
- Develop guidance for future surveillance work by providing a field level disease card, case definition and outbreak investigation template
- Develop or plan collaborative research on EMS/AHPNS, intraregionally and internationally, to identify the primary causative agent, risk factors and develop management interventions including preventive measures
- Formulate a regional action plan to improve disease surveillance and reporting, and contingency measures to contain and prevent further spread of the disease;


EMS Regional Consultation 9-10 Aug 2012

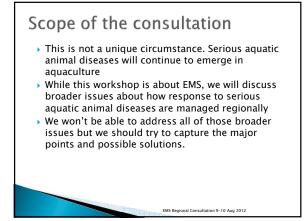
Participation

- 16 Resource experts
- About 40 national participants representing the CA and lead research institutions from NACA member countries

EMS Regional Consultation 9-10 Aug 2012

- > 10 leading private sector representatives
- 8 regional/international organizations
- 8 Post graduate researchers

Consultation StructurePresentations by resource experts

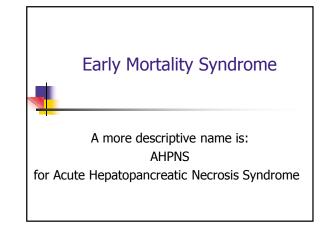

- Sharing of country experiences
- Working group discussions
- Working group presentations
- Plenary session to develop recommendations and follow up actions

EMS Regional Consultation 9-10 Aug 2012

Working Groups

- Group 1: Current Knowledge, Knowledge Gaps and Research Priorities
 Team: Dr Don Lightner, Dr Tim Flegel, Dr Huang Jie, Dr Jason Weeks
- Group 2: Detection, Reporting and Surveillance
 Team:, Dr Flavio Corsin, Dr Ian Gardner, Dr Jeff Cowley, Dr Celia Pitogo
- Group 3: Biosecurity, Emergency Response and Disease Management
 Team: Dr Larry Hammell, Dr Matt Briggs, Dr Victoria Alday, Dr Ed Leano
- Group 4: Regional Disease Response
 Team: Dr Ingo Ernst, Dr Brian Davy, Dr Peter Walker, Dr Supranee Chinabut
- Each group to have a maximum of 22 members
 Kindly fill in your names for the groups you are interested

EMS Regional Consultation 9-10 Aug 2012


Expected Outputs

- Increased awareness on EMS/AHPNS
- Current state of knowledge documented
- Field level Disease Card, case definition and outbreak investigation template produced
- Collaborative research to identify the primary causative agent and development of preventive and control measures planned/developed
- Surveillance, monitoring and reporting of EMS/AHPNS outbreaks improved
- Lessons learned in dealing with disease emergencies at the national/regional level documented
- Regional action plan on emergency response and contingency planning developed
- Report of the Regional Consultation as a NACA/DAFF 2012 document for wider dissemination (draft outline provided)

EMS Regional Consultation 9–10 Aug 2012

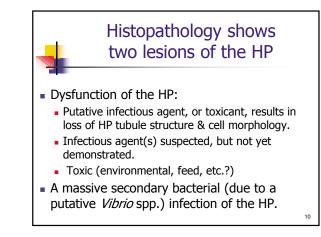
Topics in this presentation:

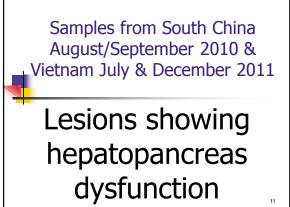
- Samples & observations from South China, August/September 2010.
- Samples from Me Kong Delta & South Vietnam, July 2011, December 2011 & July-August 2012.
- Brief results of studies on:
 - Feed from affected farms.
 - Toxicity studies with crustacides.
 - Infectivity studies using frozen samples from
 - affected farms.

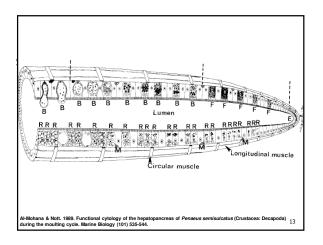
G

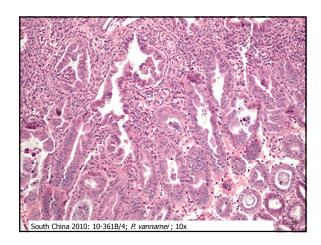
Gross Signs of EMS/AHPNS

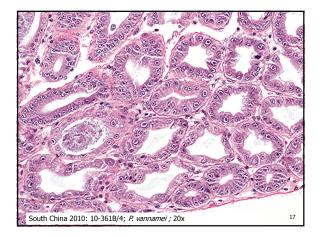
- » Significant atrophy of HP.
- > Often pale to white within HP connective tissue capsule.
- > Black spots or streaks sometimes visible.
- HP does not squash easily between thumb & finger.

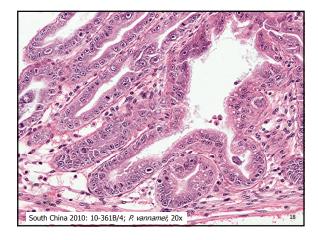


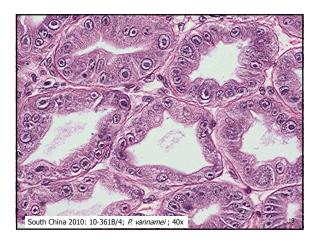


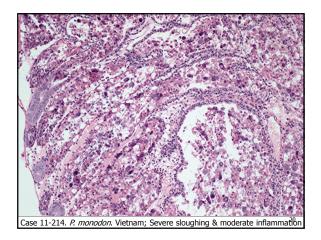


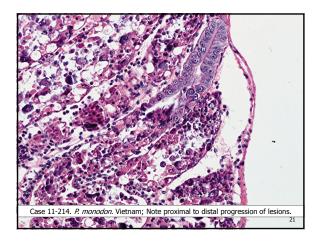


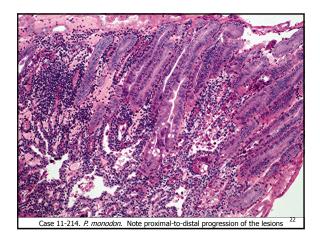


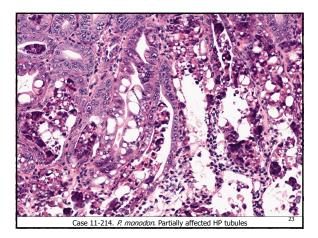


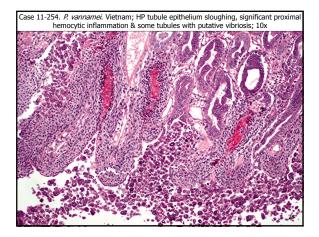


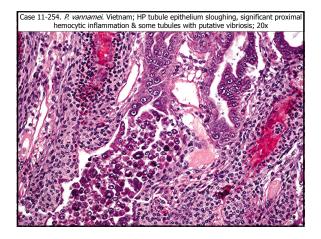


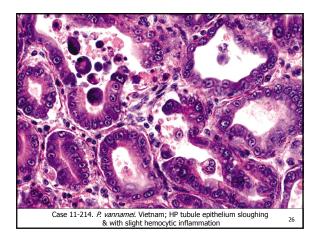


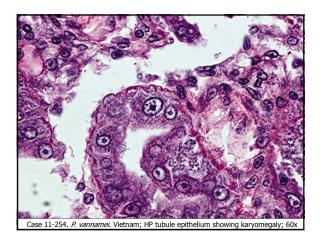


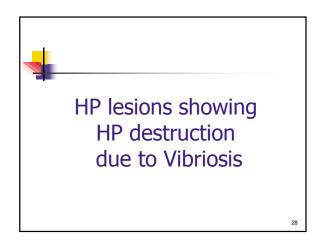


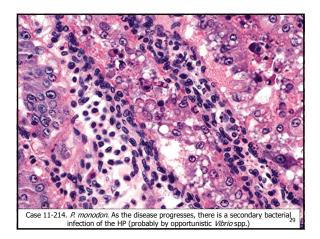


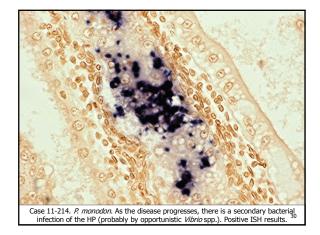


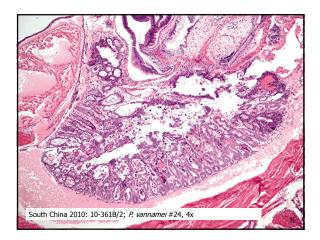


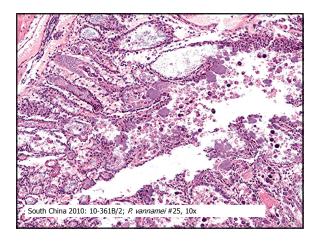


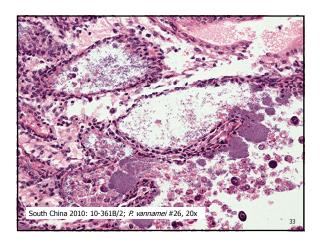


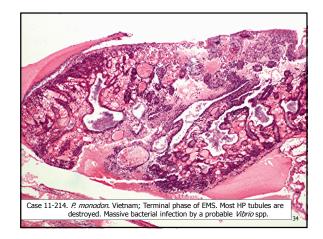


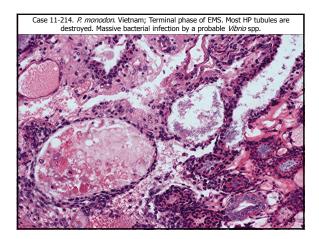


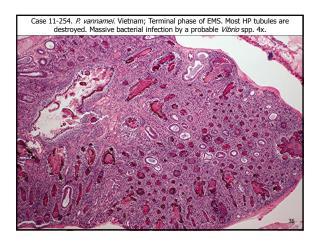


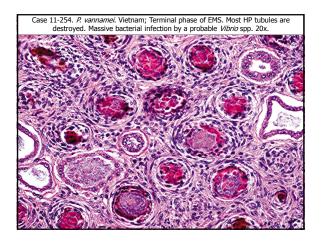


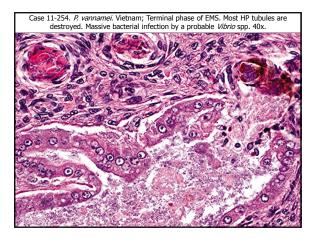


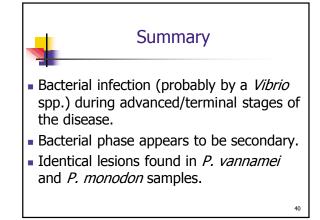


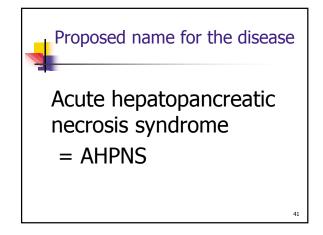


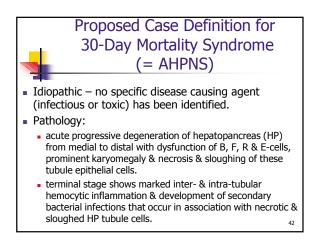








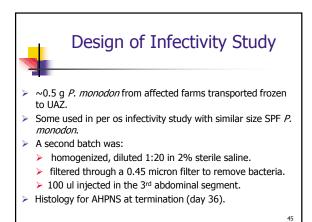




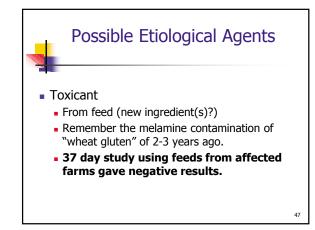
Summary Lesions found in the juvenile hepatopancreata samples Low activity of "B" cells and "R" cells.

- Low mitotic rate in "E" cells.
- Rounding-up & sloughing of HP tubule epithelial cells.
- Intertubular hemocytic congestion (inflammation).
- Proximal-to-distal pattern of lesions.
- Distal end of tubules are the last to be affected.
- Enlarged nuclei (karyomegaly), with prominent nucleoli.
- Additionally.

Infectious agent:

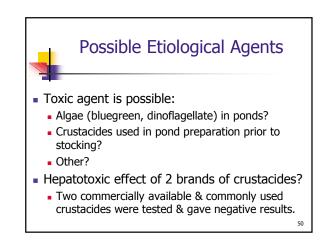

- 37-day per os & injection infectivity study gave negative results.
- Toxicant(s):
 - 37 day study using feeds from affected farms gave negative results.
 - Two commercially available & commonly used crustacides tested gave negative results.
 - Algal or other environmental toxin(s)?

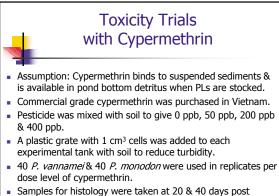
Possible Etiological Agents


- Infectious agent bacteria (*Vibrio* sp.), virus, parasite?
- Unlikely:

43

- Bacterial phase of disease occurs after HP begins to degenerate.
- 37-day per os & injection infectivity study gave negative results.


Summary of Infectivity Study				
Tank	Treatment	Number	No. Day 36	% Survival
1	Negative control	10	10	100%
2	Per os*	10	10	100%
3	Injection	10	10	100%
* MBV was p	bassed to the S	SPF <i>P. mon</i> d	<i>odon</i> in the p	er os group. 46



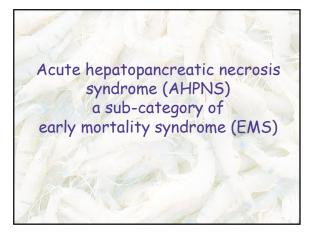
- 3 starter feeds (2 Uni-President & 1 CP) were collected at farms with ongoing EMS.
- At UAZ each feed was provided to 30 ~1g SPF *P. monodon* for 37 days.
- Fed at 5% body weight in 2 equal feedings.
- Histology of samples at termination (day 37) examined for AHPNS.

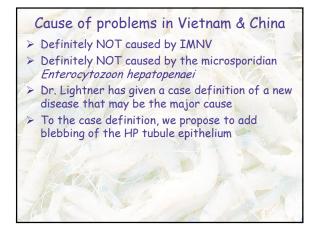
Feed Toxicity Study Results						
	Tank Number	Treatment	No. Stocked	Day 37; No. Collected	% Survival	
	1	Rangen	30	30	100%	
	2	Uni-Pres #1	30	29	97%	
	3	Uni-Pres#2	30	30	100%	
	4	CP feed	30	29	97%	
						49

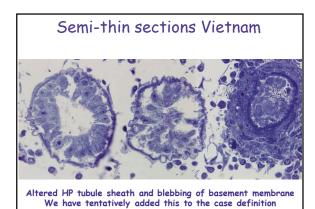
Samples for histology were taken at 20 & 40 days post	
stocking & examined for signs of EMS.	51

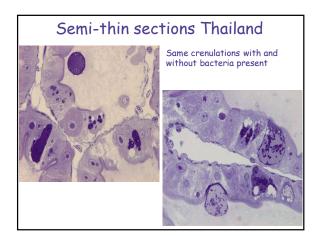
Toxicity Trials with Cypermethrin						
	Concentration of Cypermethrin	20 day histological findings*	40 day histological findings*	Final Adjusted Survival (%)**		
	0 ppb	AHPNS N/D	AHPNS N/D	100%		
	50 ppb	AHPNS N/D	AHPNS N/D	100%		
	200 ppb	AHPNS N/D	AHPNS N/D	100%		
	400 ppb	AHPNS N/D	AHPNS N/D	100%		
 * AHPNS = acute hepatopancreatic necrosis syndrome. N/D = not detected. ** Survival adjusted for histological samples. 						
					52	

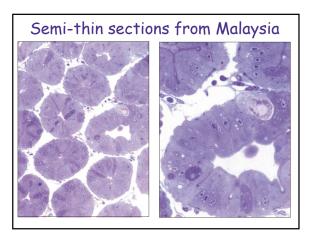
Possible Etiological Agents – What We Know to Date:

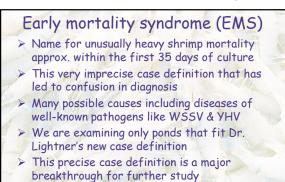

- Severe HP dysfunction followed by a terminal *Vibrio* infection of the HP.
- Vibrio sp. may not be the agent of AHPNS as terminal phase of EMS appears to be opportunistic.
- Feeds (e.g. a new ingredient) tested do not cause AHPNS.
- Cypermethrin in static renewal bioassays or when added to soil does not cause AHPNS in lab trials.
- Tests for an infectious agent (viral, parasitic,
- bacterial) have been negative to date.

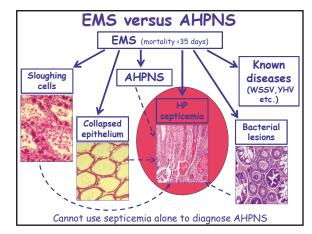

Acknowledgements

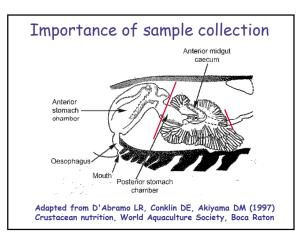

- OIE (World Organization for Animal Health) for travel to Vietnam & Thailand.
- Department of Animal Health, MARD, Vietnam for local arrangements in Vietnam.
- Uni-President feed company in Vietnam for funding toxicity & infectivity studies.
- \succ CP Foods, Thailand for funding recent work on EMS.
- World Bank & Global Aquaculture Alliance for travel.

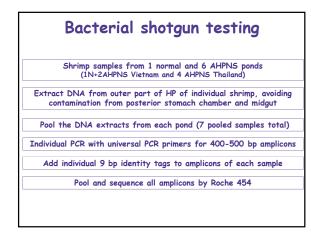


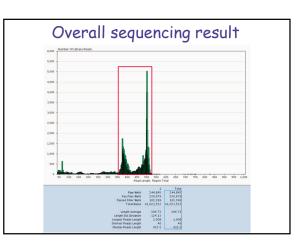


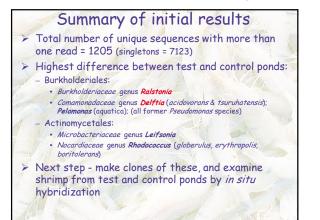


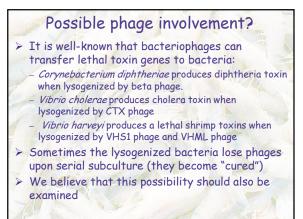


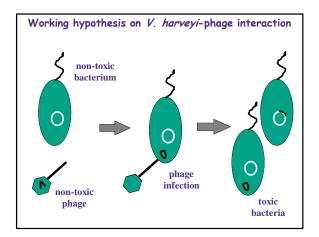

> It is important because research progress depends on analysis of identical cases

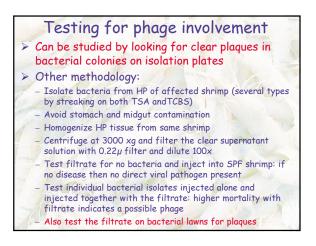


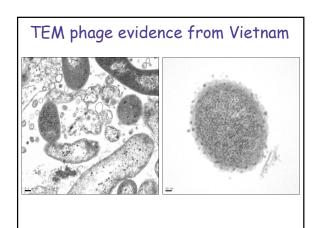

Possible causes of AHPNS

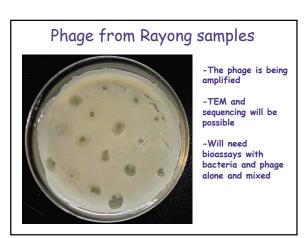

Should check for biotic and abiotic toxins in:
 Pond water & water supply, soils & sediments, etc.
 Feed & feed ingredients, probiotics, etc.


- Old and "new" agricultural pesticides, etc.
- Should investigate possible new bacteria:
 Do shotgun sequencing of bacterial rDNA & in situ
 Check for a possible phage-bacterium partnership
- Should investigate possible viral etiology:
 Do challenge tests with filtered and unfiltered tissue extracts to see if a filterable agent is present
 - Check with TEM for viral particles
 Do shotgun sequencing of "viral extracts" & in situ

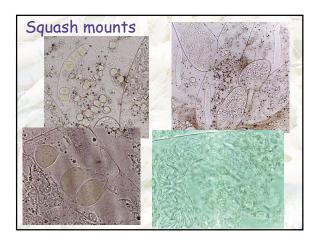


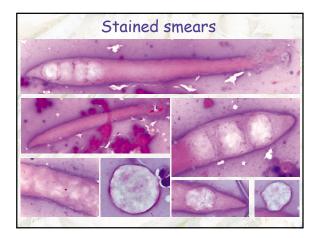


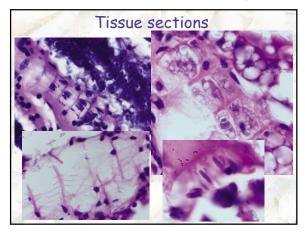


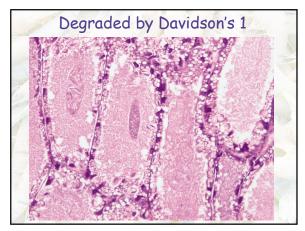


- Testing for unknown shrimp viruses
- > This refers to viruses other than phages
- Remove HP tissue of AHPNS shrimp (remember to avoid stomach and midgut contamination)
- Homogenize in buffer and centrifuge at 3,000 to 5,000 g to precipitate debris
- > Remove the clear supernatant solution, filter through 0.22 μ filter and check bacterial free
- Dilute 100x and inject into SPF shrimp with buffer control
- > If no AHPNS mortality, there should be no viral cause
- Unpublished tests like this have so far been negative

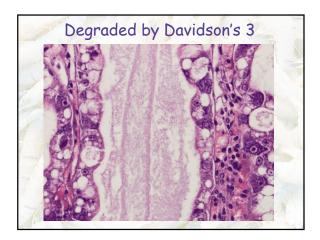

Shotgun cloning for viruses We are doing this but have no results so far Prepare samples as in the previous slide up to the 0.22µ filtered HP supernatant solution Transfer the tube to an ultracentrifuge to precipitate any viruses that might be present Extract the total nucleic acid from the pellet (both RNA and DNA) Use the extract as template for random prime

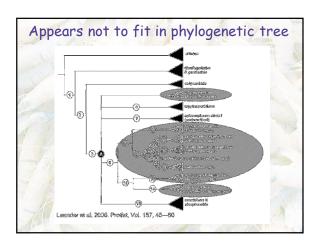

- RT to produce cDNA from any RNA present
- Use the mixed cDNA and any original DNA as template for random prime PCR
- > Sequence the whole PCR product mixture

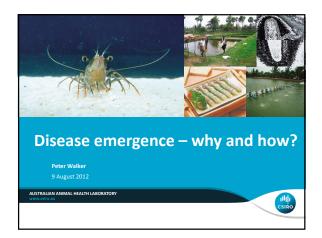



New "gregarine" from WFS shrimp

- > Unlike any gregarine previously reported from shrimp; found together with *E. hepatopenaei*
- Un-segmented with an apparent meront stage in the shrimp hemolymph
- Trophozoites in HP tubule lumens and easily degraded by Davidson's fixative
- Trophozoites can be seen in squash mounts with careful examination
- Fibrous lattices formed in the interstitial spaces of the HP, surrounding tubules
- > Appears to be a meront amplification stage





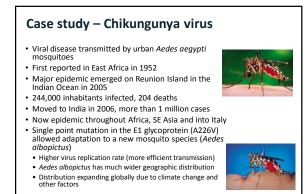


Emerging Infectious Diseases (EIDs)

EIDs are infectious diseases that have first appeared or whose incidence has increased in the past 20 years Term is usually applied to human diseases:

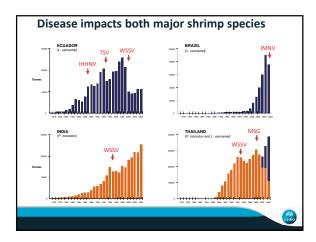
- EIDs account for at least 12% of all human pathogens
- 54.3% are caused by bacteria or rickettsia (mostly drug-resistant
- strains)
- 25.4% are caused by viruses

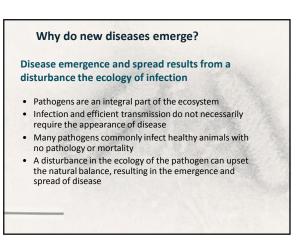
2 | Presentation title | Presenter name

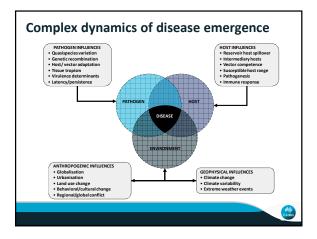

- 60.3% of EIDs are zoonotic (human diseases of animal origin)
- 71.8% of zoonotic EIDs originate in wildlife
- During the past decade, 28.8% of EIDs have been vector-borne (transmitted by insects)

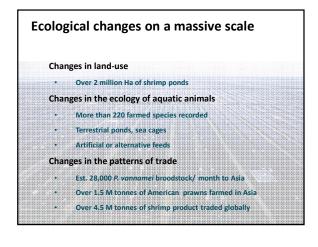
Disease emergence is a global problem

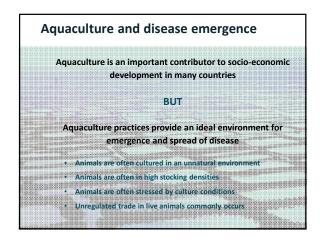
Case study – SARS virus

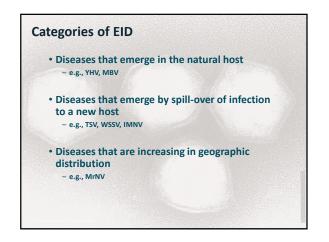

- Emerged in Guangdong Province, China in November 2002
- Spread to 37 countries in 6 months
- Estimated economic impact \$20 billion
- · Emerged from wildlife, probably bats to infect palm civets • Humans exposed to civets in markets
- 8422 cases, 916 deaths
- Containment and eradication
- Rapid response
- International cooperation (WHO coordinated)
- Rapid identification of the pathogen
- Rapid diagnostic test development
 Travel restrictions
- Face masks Isolation of infected patients





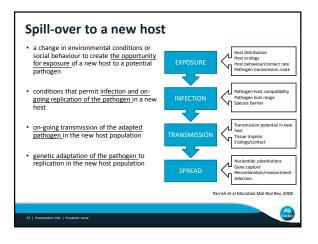

5 | Presentation title | Presenter name





Diseases that emerge in the natural host

- Infections are non-pathogenic in the natural host – Long period of adaptation
- Efficient replication and transmission are not dependent on
- the development of disease
- Disease occurs as a result of:

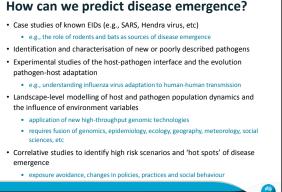

13 | Presentation title | Presenter nam

- Change in the pathogen (mutation, recombination, acquired virulence factor)
- Change in the environment (stress, climate or weather) - Change in the host (genetic selection, immunodeficiency, concurrent infection)

Diseases that emerge by spill-over to a new host • Infections are non-pathogenic in the natural host (reservoir)

- Exposure and spill-over may be as a result of:
- Increased proximity to a reservoir host
- Increased frequency of exposure to a reservoir host
- Genetic change in the pathogen permitting infection of a new host
- Unusual amplification of pathogen levels (or increases shedding) in the reservoir host
- physiological stress
- change in ambient temperature
- Spill-over occurs more commonly between related host organisms

14 | Presentation title | Presenter name



- Changes in environmental conditions
- Climate change
- Climate variability
- Extreme weather

16 | Presentation title | Presenter nam

The ongoing problem of disease emergence

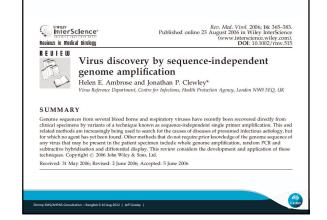
- New diseases continue to emerge
- Diseases continue to spread to new areas
 Losses due to disease continue to impact significantly on production
- Disease losses are driving environmental impacts
- Industry seeks technological solutions
- The real solution may lie in attitudes and behavior

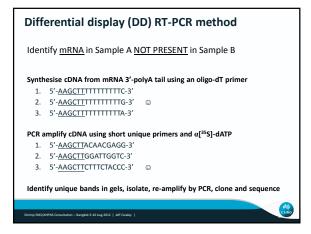
Molecular options for investigating the cause of AHPNS

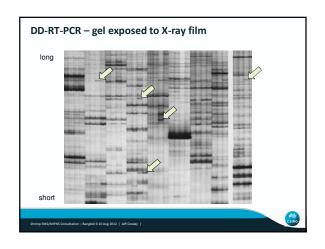
If clues indicative of a specific known virus type

- · gross disease signs
- histopathology
- virion or nucleocapsid morphology, etc

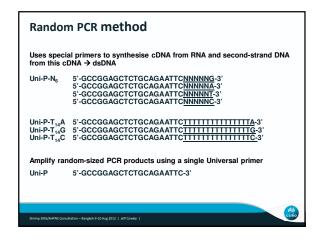
p EMS/AHPNS Consultation – Bangkok 9-10 Aug 2012 | Jeff Cowley |

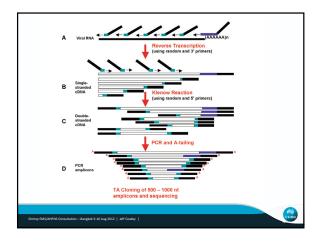

Educated guess

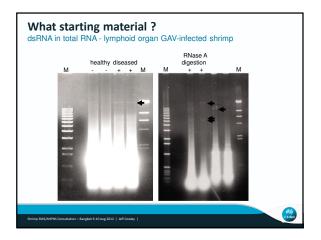

Sequence-assisted genome amplification methods

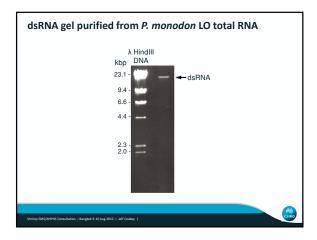

- PCR using degenerate primers targeted to functional motifs of proteins highly conserved across related viruses
- PCR using primers with 3'-terminal sequences targeted to conserved inverted terminal repeat sequences at the end of virus genome segments

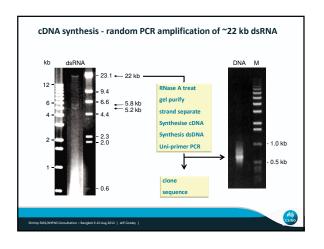
Molecular options for investigating the cause of AHPNS Suspect a viral pathogen but few or no obvious clues Sequence-independent genome amplification methods • Differential display • • Subtractive hybridisation • Random PCR • • Whole genome amplification • • Crude shotgun sequencing • Several others Approach selection based on available starting material

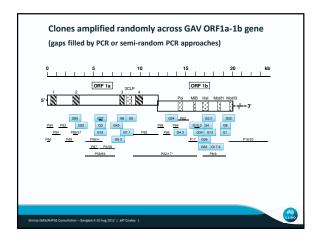

AHPNS Consultation – Bangkok 9-10 Aug 2012 | Jeff Cowley |

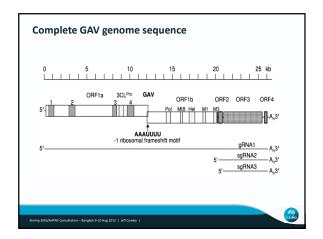


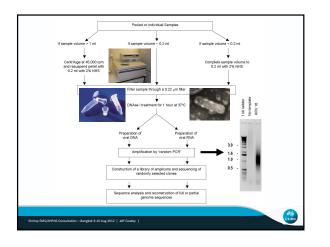


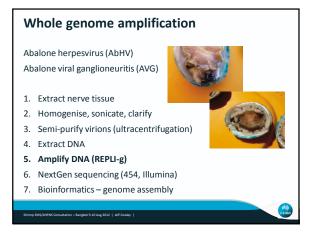


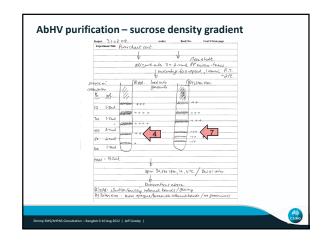

	File Edt Vew	· 🕼 🖞 🖉 Search Elfavorites Constany Ely- 🌲 🖬 🚽				
		tak genne at gist-biringh-dutak	-			
	Links Links	創CSIRO Intranet 創CSIRO WWW Page 創Long Pocket Intranet 創Oustomize Links 創Free H	tmal 왕) Windows Media 왕) Windows			
aAV 🗖	guery gb_AY039647	0AACOOTATATCTOTOTCOAGATOCATCTAGGAAGAGCOTOGOGCCCAGTCATCTGCCTT	Other genne S'rend.			
	query gb_AY039647	TCACOTTTCCG&CGACATTGCC&CAGAGAGCTAGCTATTGCACCCCCCCCCC	5'-AAGCTTCTTCTACCC-3'			
	query gb_AY039647	AAGGTATGATTCAAATCCCGAATATAATGATTAAGGAGCAGGAAAATCGTCATATCTCAGG AAGGTATGATTCAAATCCCGAATATAATGATTAAGGAGCAGCAGAAAATCGTCATATCTCAGG				
	query gb_AY039647	GCTCCACACAGGCACTACCOTTTCTCAATCATGACCGAGATTCCATTCC				
	do"winnaewi dnech	AGACGATOGGCOGTOGATTAGTITIGCATTCCTTTICAATGAGGTTTGCAAAGCGAGGTC AGACGATOGGCOGTGGATTAGTITIGCATTCCTTTICAATGAGGTTTGCAAAGCGAGGTC				
	query gb_ATD19647	CATTOCTTOTOCLOGGGTCAAGAACTCCGATTOGRAGACCACTTOCCCACGGRATAATT CATTOCTTOTOCCAGGCGTCAAGAACTCCGATTOGRAGACCACTTOCCCACGGRATAATT				
	gb_A7039647	CATTORCCCCTAACTAAGGGTGATTTOCATC ATATCTGCTCCAGCCACCCGATATCATGA				
	query gb_AT039647	CCTCCGTGCATCGATGAATAGCGTGTCCCCCCTTAGACAGGCCAACTTCTTCCATGCCG CCTCCGTGCATCGATGAATAGCGTGTCCCCCCTTAGACAGGCCAACTTCTTCCATGCCG				
	query gb_AT039647	CASCCTCATOSTTTCCCOSOTGATATCAARAARAARA CASCCTCATOSTTTCCCOSOTGATATCAARAARAARAARAARAARAARAARAARAARAARAARAAR	5'- <u>AAGCTT</u> TTTTTTTG-3'			
	Securit 111 ER	, φ. ΔΥΟΣΡΑΤΤΟ. 20155); / Lisfe C provints 回日の毎3項を当まえるの時間の日の間は、 」(資料1954、1974年、1979年4月19日の。(資料1954年、1970年)	0 P T X 2 D R R X T 4 D			

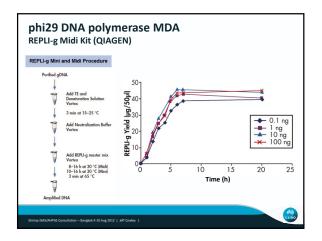


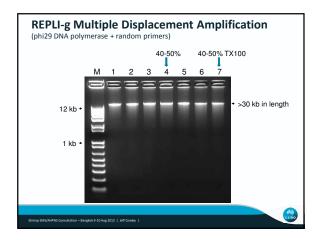


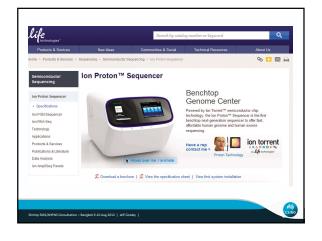


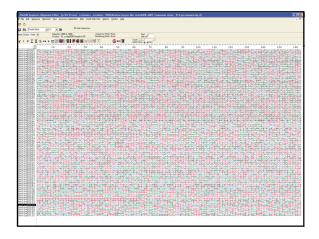


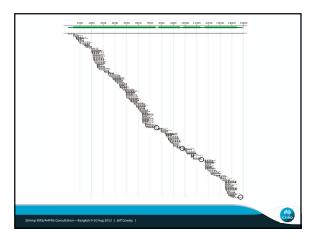


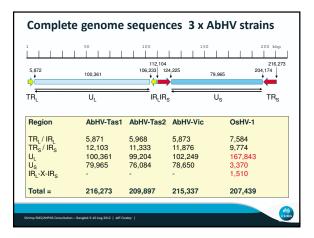


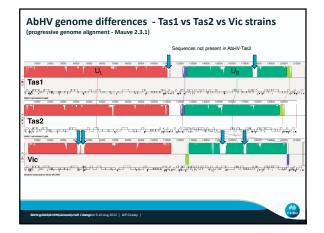


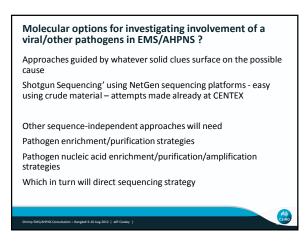


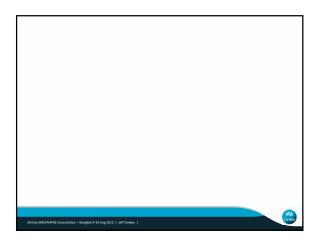


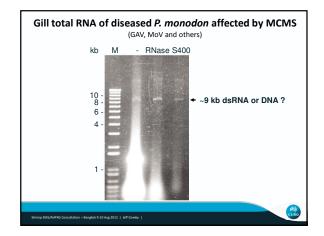

	DNA	185		DNA	after F	EPLI-g
No.	AbHV		Difference	AbHV	rDNA	Difference
1	20.4	18.7	-1.7	16.0	22.6	6.6
2	24.1	21.7	-2.4	16.4	25.7	9.3
3	23.8	21.9	-1.9	16.5	27.7	11.2
4*	23.0	21.2	-1.8	16.1	28.0	11.9
5	20.4	18.7	-1.7	16.2	23.0	6.9
6	24.1	21.7	-1	17.6	25.4	
7*	23.0	21.2	-1.8	16.7	30.1	13.4

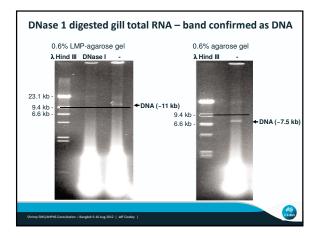


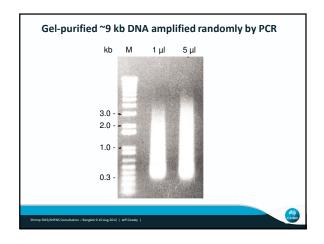


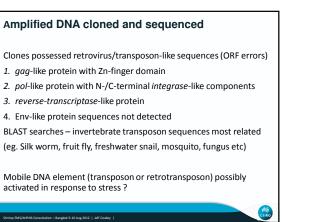


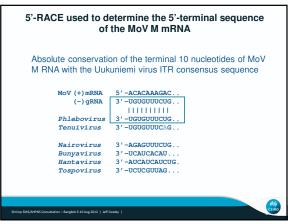


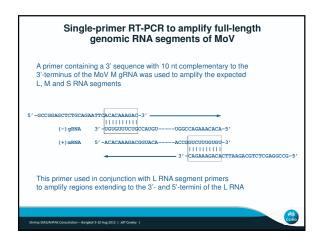


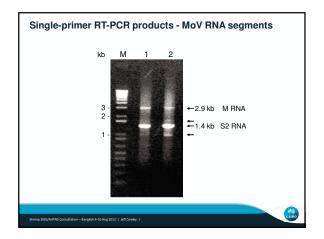


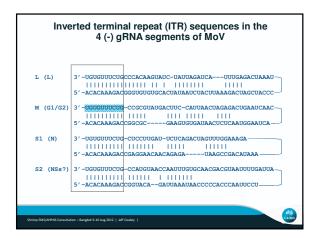


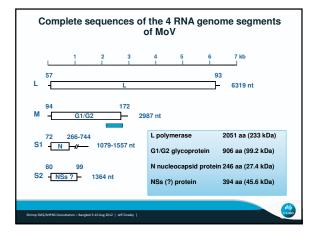


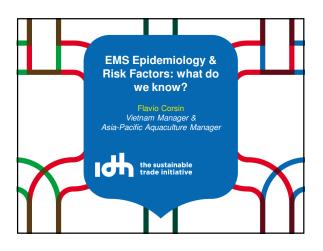














Source of information

• FAO/OIE CMC-AH mission: 11-19 July 2011 (VN) - Questionnaires/interviews (17 farmers)

- case-control approach
- Participatory epidemiology (other 17 farmers)
- FAO supported analysis of DAH survey (VN)
 - Questionnaire/interviews (20,584 farmers; 29 key shrimp farming provinces)
 - Descriptive analysis
 - Statistical analysis
- · Mixed sources (Regional)
- · Note: not "proper" epi investigations

the sustainable trade initiative

EMS: characteristics Mass & sudden mortality (>10/day) About 1 month after stocking Abnormal HP (shrunken, white, swollen) Apparently spreading Outbreaks 4-5 days apart (direct transmission?)

Case definition

- Don Lightner: animal-level case definition
- Pond-level case definition
 - Mortality (mass, eg >10/day)
 - Abnormal HP
 - Time after stocking?

General • Intensive systems ↑ risk • Larger farms ♥ risk (of course) • Inland districts & lower salinity ♥ risk • Having a reservoir ♥ risk • Not all farms affected in 2010 experienced EMS in 2011 Pond preparation • Saponin ♥ risk • Longer drying time ↑ risk • Ploughing ↑ risk • Use more lime ↑ risk

Risk factors?

the sustainable trade initiative the sustainable trade initiative

Risk factors?

Stocking

- Monodon more susceptible. Vannamei also affected
 Stocking later & older seed risk
 Source of seed may play a role. Seed from "known sources" as opposed to nursery/middlemen Ψ risk

No association with insecticide use

- Other "non-biological" associations
- Testing water, using "certified" seed, sharing equipment, using vitamins/antibiotics... ↑ risk

Careful about bias!

the sustainable trade initiative

If it is a pathogen, where from?

- Sudden appearance in 2010
- · Conditions changed?
- No major/unusual weather event
- No recorded/detectable change in farming practice
- · Possibly associated with an introduction

the sustainable trade initiative

Conclusions & recommendations

- · Likely infectious
- Can be controlled
- · Seed appear to be important (pathogen introduction?)
- · Need a properly designed epi investigation - NACA to coordinate?
- ERAAAD to support?

the sustainable trade initiative

Is EMS A Management Problem ?

Dr. Matthew Briggs

Director

What is EMS ?

EMS = Early Montality Syndrome

- Early mortality syndrome can be caused by a number of different pathogenic, environmental and management issues. Some, but not all of this appears to be caused by a new and previously unknown syndrome called
- EMS is associated with mass shrimp mortality (40-60 % typically, but sometimes 80-100%) in shrimp farms of both *monodon* and *vannamei* occurring within 10-30 days of stocking and within a week of first symptoms
- A Vietnamese study found *monodon* were twice as likely to be infected than *vannamei*, although there have recently been signs that domesticated *monodon* are less affected. Other species –unclear !

EMS History

- EMS first noticed in in intensive *vannamei* ponds in S. China in 2009 (ignored) and then in early 2010 all over S. China and in *monodon* ponds in S. Vietnam and from mid 2010 in West Malaysia (Pahang and Johor States)
- Came back stronger in March 2011 in up to 100,000 ha in Mekong delta and Central Vietnam, plus S. China and most of W. Malaysia much worse & again in early 2012
- From September 2011 spread to Chantaburi/Rayong/ Chachoengsao in Thailand (becoming more serious in 2012) and in April 2012 Sabah & Sarawak, E. Malaysia
- Unsure if same problem or not, but histo-pathological symptoms characteristic of AHPNS can sometimes be seen, but not in all cases of EMS

EMS/AHPNS Gross Signs

- Lethargy, slow growth, corkscrew swimming, loose shells, initially swollen but then progressively shrunken, pale & degenerating hepatopancreas with less lipid droplets (consistent with toxic agent) & massive bacterial infection. Also - soft, dark, mottled carapace, white patches on body and sometimes white faeces and fouled gills. Dead shrimp on pond bottom (not sides) usually during/immediately after moulting process
- Haemolymph clotting time extended >1.5 minutes indicating stress

Early Mortality

- EMS itself is not a new issue, only the name
- Shrimp of many species in many areas have long had a difficult period around one month of culture, resulting in early mortality (one month syndrome)
- However, recent problems around Asia often appear much more serious than previously encountered
- Many of the reports of this EMS which have been occurring throughout Asia since 2009-2010 could rightly be termed EMS, but may be due to the same (often undiagnosed) diseases and poor management that have been experienced for some time, whilst others may be due to something new

Early Mortality

- Previous experience has shown that often, with newly stocked ponds, levels of potentially toxic bacterial species (especially vibrios) increase quite rapidly after about one month of culture as feed levels start to rise, algal blooms become unstable and inadequately treated pond soils begin to release toxic nutrients such as ammonia and nitrite
- Such increases in pathogenic bacteria cause stress and, if further stresses due to the presence of other pathogens (including viruses), rapid environmental changes or poor management practices occur, this can lead to mortality

EMS and AHPNS

- So is EMS merely a worse expression of existing problems

 or is there something different or new out there which we have not experienced before ?
- What appears likely now due to the severity, sudden onset and rapid spread of this new syndrome, is that there is one particular type of EMS, which has been termed AHPNS by Dr. Lightner, with new, specific and characteristic symptoms, which does indeed appear to be caused by a new pathological or toxic agent
- But that many other cases may be EMS from known causes, provoked by bad management
- However, whether "normal" EMS or the "new" AHPNS is the cause, it is to be expected that implementation of better management practices should still be able to reduce losses

Clinical Signs of AHPNS

 Or choice commences possible coparate condition with a clear cose definition
 Clear C. Acute progressive degeneration from proximal to distal end of the tubules of the HP. Medial to distal

destruction of B, R & F cells, Decreased cytokine function, No cellular differentiation, and Lack of mitotic spindles in E-cells, Prominent karyomegaly and sloughing of tubular epithelial E-cells in HP

- Stage 2: Intertubular aggregation of haemocytes
- Stage 3: 2° bacterial invasion leading to multiple Vibrio Spp. (& other) infections especially in the HP
 Also, Flegal recently found abnormal blebbing of

the HP tubule margins in the absence of bacteria (happens with toxins or cell apoptosis)

Disease Identification

- When farmers experience early mortality, the tendency in many areas of Asia is not to conduct a thorough analysis of the actual causes of the mortality, but to point the finger at the latest new disease and blame that (i.e. the mis-diagnosis of IMNV in Asian countries outside of its known range of Indonesia)
- Without thorough and rapid analysis, correct diagnosis is often elusive
- In the case of AHPNS this means histopathology by a trained vet, together with other analysis of potential viruses, bacteria and other pathogens using histopathology, PCR and/or bacteriology
- Thus, we must all be careful when we try to ascribe a cause to a particular episode of EMS in our ponds

Our Questions ?

- Is EMS (Early Mortality Syndrome) caused by poor management or specific disease(s)?
- Should it be renamed (Bad Management Syndrome) ?
- In many cases, the answer to this question is probably yes, but how much of EMS is caused by BMS ?
- And is BMS the cause in the sub-set of cases where EMS is caused by AHPNS ?
- What are the causes (and potential solutions) for EMS and AHPNS ? and
- What can we do to improve management to prevent EMS and AHPNS ?

EMS - causes ?

- Main potential causes of EMS could include: Pathogens such as viruses, bacteria & microsporidians; Toxins from either algae or applied pesticides; and Poor pond management practices
- WSSV has long known to be cause its major effects on juvenile shrimp (often 20-30 days after stocking), especially in combination with increasing vibrio loads and especially when stocking coincides with either cold or fluctuating temperatures
- Some Chinese farmers are suggesting that outbreaks of WSSV, TSV, YHV and other viral pathogens are responsible for much of the losses due to EMS, but that they are not correctly diagnosed

EMS - causes

- Bacterial concentrations in both the water and the shrimp tend to increase during the first month, leading to increasingly stressed shrimp and thus mortality, and in many cases heavy bacterial infection of the hepatopancreas is characteristic of shrimp dying during outbreaks of EMS
- Early reports from Vietnam implicated
- infections, and it is implicated in white faeces disease, but not in mass mortalities and is not common in EMS cases Algel toxins – typically originating from unwanted blooms of
- blue-green or dinoflagellate species always a possibility, but no proof of this yet
- Overexposure to pesticides (from crustacides like cypermethrin) – often blamed in Vietnam and may cause EMS. But seems not AHPNS as cannot exactly replicate symptoms in shrimp exposed to these chemicals

EMS – causes 🛾

- Poor management practices It is clear that in many cases, lack of proper management has lead to early mortality
- Examples of poor management practices include: poor pond preparation, lack of drying and removal of sediments, stocking in cold weather, lack of testing of PL for major pathogens, lack of control over algal blooms, lack of screening of inlet water, poor biosecurity leading to disease and disease vectors entering ponds, insufficient aeration for the biomass under culture, use of poor quality diets, use of contaminated water supplies, overuse of potentially harmful chemicals, lack of monitoring and control over bacterial concentrations in the ponds etc etc.

Risk Factors of EMS/AHPNS

 Older farms close to the sea, poor pond preparation (no sludge removal) & management leading to excess nutrient pollution, overcrowding of farms, sharing water sources, overuse of chemicals (pesticides/ABs/Chlorine/lime), intensification, seed transportation stress, poor (bacterially infected) seed quality (although 54% of Malaysian farmers and many in Thailand report faster growing SPF seeds worse affected than slower-growing seeds – perhaps due to increased moulting rate ?), high salinity at stocking, high and fluctuating temperature, overstocking & overfeeding (especially blind at start of cycle), inadequate aeration and H₂S toxicity

Risk Factors of EMS/AHPNS

Farms less affected:

- Low salinity (<20 ppt), far from sea, plastic liners, biofloc systems, (many biofloc or semibiofloc farms report less problems – but not all), use of high quality seed, especially SPF *monodon* stocks, strict control of early feeding rates, thorough pond and environment disinfection protocols (for both virus and bacteria) prior to stocking, use of high quality probiotics and specific immunostimulants
- Risk to wild shrimp fisheries (UNKNOWN ?)

EMS - Management

- EMS can be caused by many different factors, which largely can be avoided, prevented or minimized through proper management,
- It has long been known that effective control over the 3 main elements of managementnamely the shrimp, the pathogens and the environment can reduce risks and increase the likelihood of producing successful harvests

EMS - Management

- Experience has shown that proper management techniques can result in good production even when multiple pathogens are present within the culture environment, provided that pathogen loads are reduced and shrimp stress levels are minimized – this should also hold true for management in the presence of EMS/AHPNS
- There are already some recommendations which have been published suggesting methods of management that can either prevent or eliminate these problems due to EMS

Management methods to reduce impacts of EMS/AHPNS

- Good preparation of the pond environment : Remove sludge &/or completely dry the pond bottom to control organic nutrient loading
- Thoroughly disinfect (of virus and bacteria) water in RV and ponds prior to stocking
- Consider employing biofloc management technology or control algal blooms to limit b/g or d/f blooms
- Take care with mineral balance with low salinity ponds
- Stock only healthy post larvae (preferably > PL10) from reliable hatcheries (check condition of the HP). Ensure use of only approved probiotics

Management methods to reduce impacts of EMS/AHPNS

- Stock based on pond carrying capacity (max for vannamei 13-15 mt/ha and monodon 6-8 mt/ha)
- When CC reached (and feeding/growth slows and/or DO falls) conduct partial or full harvests
- Control feeding to about 12 kg per 100,000 pcs/day of shrimp at 30 d with average body weight at 2.0-2.5 g. The accumulated feed at 30 d should not be <250 kg. Reduce feeding when water temperatures <26 °C. Maximum daily feed increment should only be 500g/100,000 shrimp.
- Add good probiotics and/or immune stimulants to diets to improve resistance

Management methods to reduce impacts of EMS/AHPNS

- Maintain DO >3-4.0 ppm near the edge of sludge. Provide 1 HP/400 kg of biomass.
 When adequate oxygen is provided, problems with toxic hydrogen sulphide, ammonia and nitrite can be avoided
- Try to avoid stocking in cold weather or during periods of fluctuating environmental parameters (temperature/salinity)
- Use of domesticated, selected monodon stocks where available ?

Use of Immunostimulants to Control EMS ?

- Some work done by GS Biotech this year in East Malaysia with their general immunostimulant product Beta defence feeding at 3% vol/wt in diet from day 1 throughout 78 day cycle with vannamei
- Product contains LPS, Beta-Glucans, Amino Acids and Nucleotides developed using a special fermentation technique
- Previously found effective at preventing WSSV in monodon farming in Malaysia and the Philippines
- Stocked 40-50 PL/m² 6 treated ponds got average 80-90% SR at FCR 1.34 and 16 g at 6.1 mt/ha after 78 days, whilst 6 control ponds were all harvested by 50 days when they were at just 11 g with <50% SR

Second trials using Beta-defense in West Malaysia – ongoing

- Where product was used from day 1 up do date (day 35-37) only 1 out of 4 ponds were hit with EMS
- However, where treatment was started late (day 9-12), mortality due to EMS occurred in all 4 ponds by day 23-29
- Whilst in the 2 control ponds, both ponds were hit by EMS within 28-38 days
- Note: Correct dose rate was not administered until day 21, with only 20% of recommended dose rate fed before that
- Nonetheless, if given from day 1, indications were that it was effective at preventing EMS (even at low dose rates) hence appears that EMS could be preventable !

Cause of AHPNS ?

- Testing conducted so far on animals suffering from the subset of EMS termed AHPNS showed that it appears to be caused by an unknown agent, but that it does appear (from epidemiological analysis of its appearance and spread) to be an infectious agent, or a toxic agent of unknown origin
- Thus still unknown, but some clues as
- injection of elgal or pesticide toxins into SPF shrimp are not able to reproduce AHPNS symptoms, so it does not look likely to be caused by these
- Antibiotic treatments are not successful, meaning that it is unlikely to be a bacteria unless it is species which are resistant to antibiotics

Cause of EMS/AHPNS ?

- Challenge tests with homogenates show that the causative agent is not filterable so many (also no virus seen by TEM) and PCR negative for IMNV, MrNV & all other viruses in EMS-infected shrimp
- Index and a infected with AHPNS have not been able to induce lesions consistent with this syndrome when injected or fed to healthy shrimp
- No evidence for a rickettsial agent (like NHP-B)
 Not from diet as feeding commercial feeds to
- Not from diet as reeding commercial reens to healthy experimental shrimp in tanks – no signs of AHPNS
- Some microsporidian spore infection in affected shrimp by I-SH or microscopy, but not likely the main cause

Recent Analysis by Flegal/Chalor, Bangkok, Thailand

To test for the possible involvement of bacteria in causing AHPNS, conducted shotgun sequencing of bacterial ssrDNA fragments amplified from HP of shrimp from 6 AHPNS infected (in Vietnam and Thailand) and 1 control pond. From analysis of approximately 100,000 fragments, a total of 8,327 unique sequences (TU) of approximately 400 bp were obtained. A comparison of the read frequency for these yielded 5 TU with the highest difference between test and control ponds. These consisted of the following genera; *Ralstonia, Delftia* and *Pelomonas* (both formerly *Pseudomonas spp.), Leifsonia* and *Rhodococcus spp.* The sequences from these bacterial genera will now be used to design specific probes for *in situ* hybridization assays with HP tissues from AHPNS-infected shrimp (but no results yet)/

Recent Analysis by Flegal/Chalor, Bangkok, Thailand

- According to Dr Chalor, these are not naturally occurring bacteria in the ponds and should not be in the shrimp HP, and are present at higher numbers than could be considered a coincidence
- A common trait amongst these bacteria is the ability to survive and grow well at low pH, hence Chalor suspects that these bacteria were selected for these particular traits and used as probiotics so that the hatchery tanks can be maintained at low pH to reduce *Vibrio* infections Thus the hatcheries may have unknowingly infected all the PL with these pathogenic bacteria
- Subsequently, infected shrimp then start to succumb from HP necrosis due to stress on transport/acclimation from hatchery to ponds

Recent Analysis by Flegal/Chalor, Bangkok, Thailand

- $\boldsymbol{\cdot}$ Thus, elimination of these types of probiotics in the
- hatcheries should prevent such problems
 The presence of APHNS in hatchery-reared PLs is supported by the fact that classic AHPNS
 histopathology has been found in PL from pond reared vannamei broodstock in Vietnamese hatcheries
 In addition, certain hatcheries seem to produce PL more susceptible to this syndrome and it may also
 explain the spread of this problem -i.e. from China to Vietnam with imported PLs and from West to East
- Malaysia (using PLs imported from W. Malaysia) • Although this does not explain how this problem started in Thailand (which does not import PLs.)

But: Thai hatcheries do also use a lot of probiotics !

Recent Analysis by Malaysian National Fish Centre

- Tests done on infected shrimp from Perak and Pahang States in Malaysia found colonization of haemolymph of infected individuals with high concentrations of bacteria including *Vibrio sp.* and *Photobacterium damseliae* (formerly *Pastuerella piscicida* and part of Vibrionacea family)
- Pasteurelosis has been known to cause mortality in various cultured finfish species and is common in wild fish populations. Also known to have caused black gill, HP necrosis and mortality in *monodon* in India and has been associated with disease in juvenile and adult *vannamei* in Ecuador

Recent Analysis by Malaysian National Fish Centre

- Fish can be long term carriers, and it can also be transmitted through water
- This bacteria is known to be difficult to eliminate with antibiotic treatments, with stressed fish and shrimp immuno-compromised and easily reinfected, which could explain the lack of success in treating EMS with antibiotics so far
- Already exist PCR and bacteriology tests for this bacteria, which should now be tested for more extensively in affected shrimp to see if this is a component of the syndrome

Conclusions

- A large (but undefined) portion of EMS is likely to result from poor management, although in specific cases of AHPNS, a new and as yet unverified pathogenic/toxic agent is implicated – but still may be preventable through better management
- More thorough analysis of the real causes of EMS/AHPNS should be conducted to determine the real spread of AHPNS and develop management tools and strategies to reduce its impact
- The possible role of new potentially pathogenic bacterial species and/or possible role of bad probiotics should be further investigated
- Meanwhile, use of probiotics containing suspect species in both hatchery and farm should be discontinued and only "good" probiotics used

Conclusions

- Management methods already in use to reduce stress and risks of shrimp farming in environments infected with pathogens can and should be employed to try to minimize losses due to EMS/AHPNS
- The ability of high quality probiotics and immunostimulants to prevent outbreaks should be further investigated
- Training of hatchery and farm staff in better management practices and avoidance of known risk factors is required
- PLs from all hatcheries should be screened for AHPNS symptoms prior to transfer to farms
- Movements of live shrimp stocks should be restricted until protocols for screening for EMS/AHPNS can be developed to ensure that syndrome is not transferred to new areas/countries

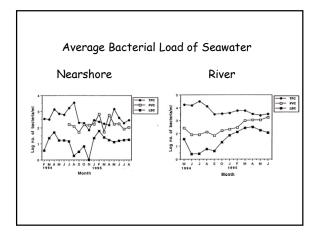
🕬 Once upon a time ...

Aquaculture in the Philippines

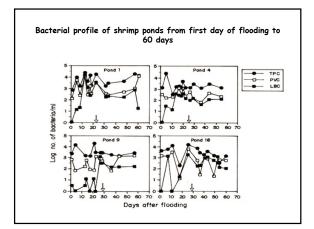
- Ranks high in world production mainly due to seaweeds
- In polyculture systems, milkfish is traditionally the main crop in brackishwater ponds and shrimps are their minor crops .
- The major cultured shrimp is Penaeus monodon.
- Shrimp export averaged 30,000 (!!!) metric tons per year.

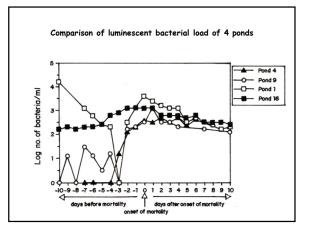
Shrimp culture in the Philippines

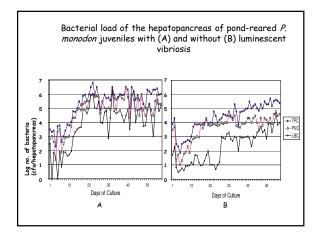
- Traditional ponds used wild-caught penaeid postlarvae
- In the 1980s, intensive pond technology was introduced leading to increased demand for postlarvae



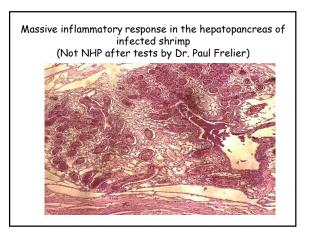
Luminescent vibriosis in hatcheries

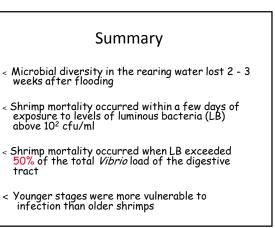

- Occurrence was reported when the hatchery system shifted from community culture to Galveston method and its modifications
- In 1990, we reported the causative agent as luminescent *Vibrio harveyi*
- At present, *V. harveyi* infection is reported in cultured aquatic animals over a wide geographical area
- Species affected not only include shrimps, but also various marine fish, lobster, and seahorse


Based on stocking density, shrimp farms are classified as: Traditional = < 1 shrimp/m² Extensive = 1-3 shrimp/m² Semi-intensive = 3-10 shrimp/m² Intensive = 10-30 shrimp/m² or more Ponds are mostly earthen, but a few have concrete dikes & water canals, or are plastic lined.

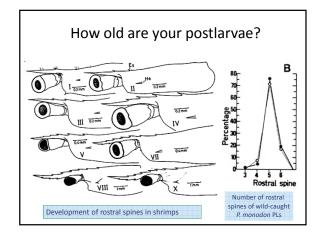

Year	Culture Period (Days)	Stocking Density (shrimp/m²)	Survival (%)	Average Weight at Harvest (g)	Abortec Runs (%)
1992	174	20.0	86.6	28.3	0
1993	220	28.0	63.0	33.6	0
1994	174	40.3	29.3	25.6	65

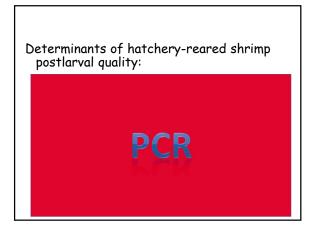


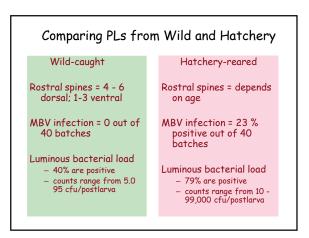

Sample	Total bacteria (cfu/g)	Presumptive vibrios (cfu/g)
Dry soil		
.́ А	6.2 × 10 ²	0
в	5.3 × 10 ²	0
с	7.0 x 10 ³	0
D	4.7 × 103	0
Moist soil		
Α	3.7 × 10 ⁵	9.5 x 10 ³
В	1.1 × 10 ⁵	5.0 × 10 ²
с	2.0 × 10 ⁵	2.5 x 10 ³
D	4.3 × 104	5.0 x 10 ²



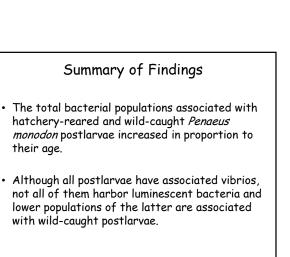
Main Problems:


- Development of a niche for opportunistic/pathogenic bacteria
- Loss of microbial diversity in the rearing system


Solutions:


- Sustain microbial diversity
- Add niche-filling but benign bacteria, which can either exclude pathogens or compete for nutrients
- These bacteria may be indigenous in the system, such as those associated with phytoplankton and fish, or introduced into the system from commercial sources

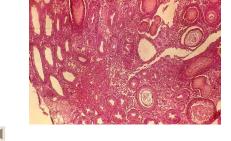
Did hatcheries play a role?						
Country	Estimated number of hatcheries	Estimated number of farms				
Thailand	1,000	25,000				
China	1,500	8,000				
Indonesia	400	60,000				
India	200	100,000				
Bangladesh	45	32,000				
Vietnam	900	8,000				
Taiwan	200	2,500				
Philippines	90	2,000				
Malaysia	60	800				
Australia	12	35				
Sri Lanka	40	800				
Japan	100	135				
Total	4,547	239,270	1:53 ratio			

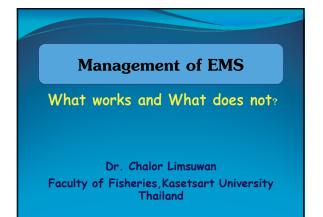


Range of bacterial populations associated with hatchery- reared and wild-caught postlarvae.							
Stage	Total Plate Count	Presumptive Vibrio Count					
Hatchery-reared postlarvae							
PL 12	1.4×10^1 - 8.8×10^4	1.0 × 10 ⁰ - 1.7 × 10 ⁴					
PL 13	3.4 × 10 ³ - 9.0 × 10 ⁴	3.5 × 10 ¹ - 8.9 × 10 ⁴					
PL 14	5.0 × 10 ² - 7.5 × 10 ⁴	4.7 × 10 ² - 2.5 × 10 ⁴					
PL 15	2.7 × 10 ² - 8.7 × 10 ⁴	1.0 × 10 ² - 1.7 × 10 ⁴					
PL 16	3.5 × 10 ¹ - 9.9 × 10 ⁴	5.0 × 10° - 9.9 × 10 ⁴					
PL 17	1.1 × 10 ³ - 7.4 × 10 ⁴	2.9 × 10 ² - 4.6 × 10 ⁴					
PL 18	6.7 × 10 ² - 1.3 × 10 ⁵	2.0 × 10 ² - 2.7 × 10 ⁴					
Wild-caught p	ostlarvae						
Stage V-VI	3.8 × 10 ³ - 3.0 × 10 ⁵	1.6 × 10 ² - 1.4 × 10 ⁵					

	postial fac	to antibiotics	
Source of Bacteria/ Antibiotics	Resistant	Intermediate	Sensitive
Wild-caught postlarva	a = 22 isolatos		
TE-30	2 (6.25)	17 (53.13)	13 (40.63
SXT	2 (6.25)	4 (12.5)	26 (81.25
F/M 300	9 (28.13)	13 (40.63)	10 (31.25
S-10	17 (53,13)	9 (28.13)	6 (18.75
NOR-10	0 (0)	3 (9.38)	29 (90.63
E-15	15 (46.88)	17 (53.13)	0 (0)
AM-10	14 (43.75)	6 (18.75)	12 (37.50
RA-5	18 (56.25)	7 (21.88)	7 (21.88
P-10	19 (59.38)	0 (0)	13 (40.63
C-30	1 (3.13)	3 (9.38)	28 (87.50
Hatchery-reared post TE-30	arvae = 48 isolat 21 (43.75)	es 14 (29.17)	13 (27.08)
SXT	24 (50)	4 (8.33)	20 (41.67
F/M 300	6 (12.5)	25 (52.08)	17 (35.42)
S-10	36 (75)	8 (16.67)	4 (8.33)
NOR-10	0 (0)	9 (18.75)	39 (81.25)
E-15	25 (52.08)	22 (45.83)	1 (2.08)
AM-10	37 (77.08)	0 (0)	11 (22.92)
RA-5	18 (37.5)	19 (39.58)	11 (22.92)
P-10	38 (79.17)	0 (0)	10 (20.83)
C-30	16 (33.33)	6 (12.5)	26 (54.17

Comparison of lu	omparison of luminescent bacterial load of hatchery-reared and wild- caught postlarvae								
Stage	Number of Batches Examined	Batches Negative for Luminescent Bacteria (%)	Range of Associated Luminescent Bacteria						
Hatchery-rear	Hatchery-reared postlarvae = 272 batches								
PL 12	97	59 (60.8)	$5.0 \times 10^{\circ} - 1.3 \times 10^{\circ}$						
PL 13	36	12 (33.3)	$2.5 \times 10^{\circ} - 8.9 \times 10^{4}$						
PL 14	25	11 (44)	$5.0 \times 10^{\circ} - 2.5 \times 10^{4}$						
PL 15	37	11 (29.7)	$7.0 \times 10^1 - 1.7 \times 10^4$						
PL 16	18	6 (33.3)	$5.0 \times 10^{\circ} - 9.9 \times 10^{4}$						
PL 17	28	9 (32)	$5.0 \times 10^{\circ} - 3.0 \times 10^{5}$						
PL 18	31	7 (22.6)	2.0 × 10 ² - 4.0 × 10 ⁴						
Wild- caught PLs	31	18 (58)	5.0 × 10 ⁰ - 3.5 × 10 ²						


Summary of Findings

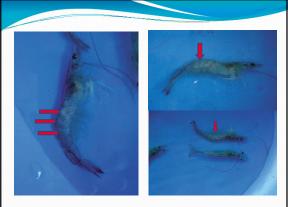

- Relatively higher percentage of antibiotic resistance is exhibited by bacteria associated with hatchery-reared than wild-caught PLs in more kinds of antibiotics.
- There is an urgent need to find and implement alternative methods of disease control to replace antibiotics.

Thank you very much for your attention

Histological section of shrimp hepatopancreas showing severe melanization, fibrosis, and hemocytic infiltration in the tubules and surrounding spaces

Early Mortality Syndromes: EMS Acute Hepatopancreatic Necrosis Syndrome : AHNS

- Mortalities occur in the first 15-50 days post-stocking
- Not related to WSSV, YHV, TSV, IMNV



1. Mortality before 30 days

- Unhealthy postlarvae due to improperly larval rearing

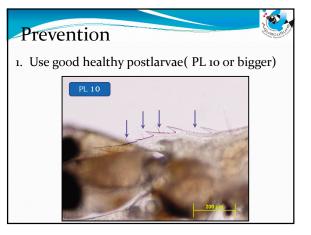
 over used of acid-producing bacteria for Vibriosis
 prevention
- Over using probiotic bacteria during water preparation and first 30 days (for decreasing pH and toxic form ammonia). This practice will result in shrimp molting more than normal condition leading to mortality after molting with soft-shell and whitish muscle.

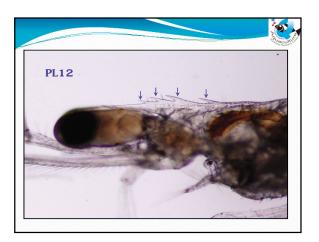
Source : Mr. Chatree (shrimp culturist)

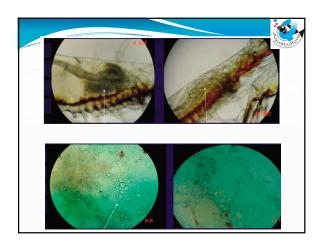
2. Mortality 30-50 days

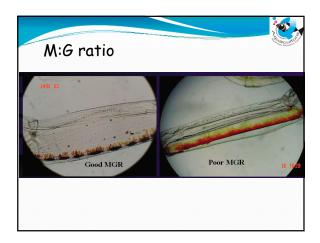
- Improper water preparation e.g.

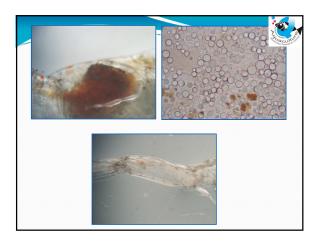
 high transparency leading to benthic algae growth
- -low pH and alkalinity due to raining
 Inadequate aerators causing insufficient dissolved oxygen(DO) at surrounding sludge area

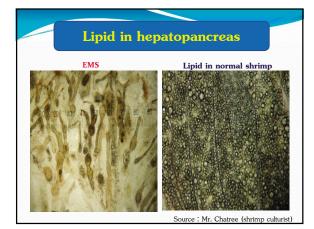






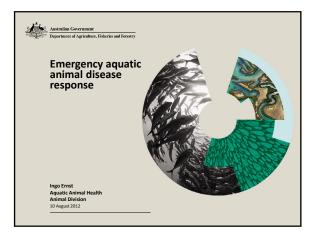


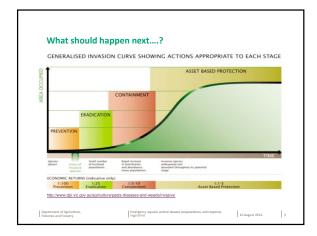


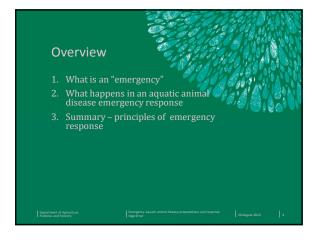


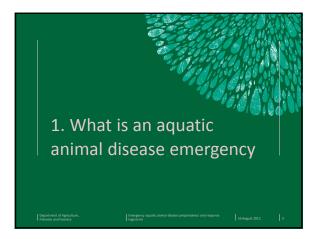
Prevention(continue)

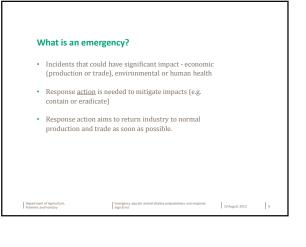

- 2. Use chemicals for water treatment (eliminate viral and carrier) not over using probiotic during first month post-stocking
- 3. pH 8.o± o.2
 4. Alkalinity should be maintained not lower than 100 mg/L(ppm)
 5. Maintain DO 4.0 mg/L all the time
- 6. Maintain consistence water color (phytoplankton)

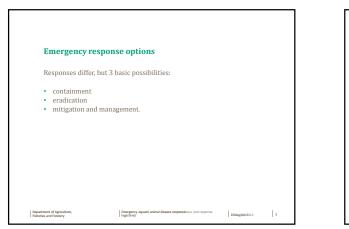


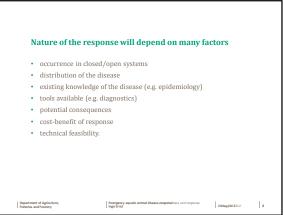


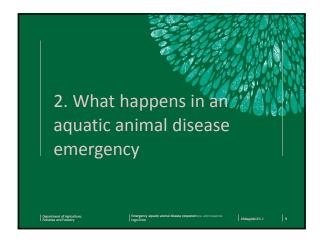


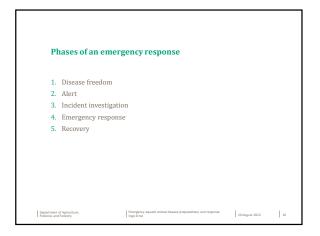


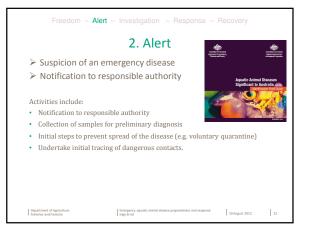


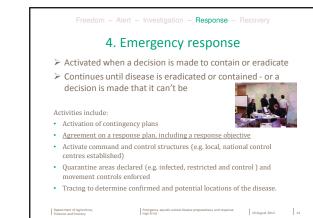


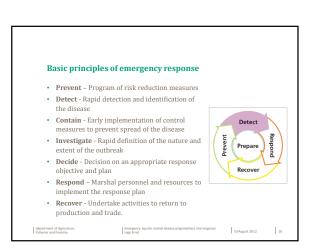


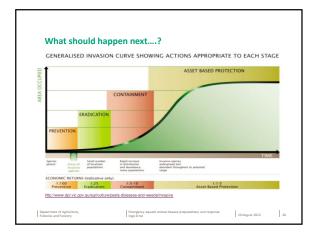


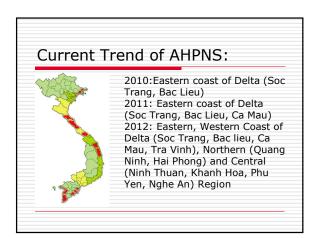




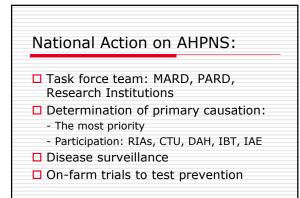


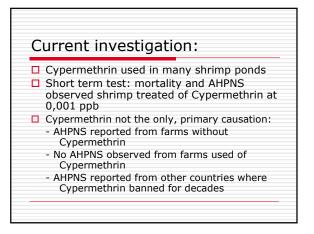





Annex 6: AHPNS Country Presentations

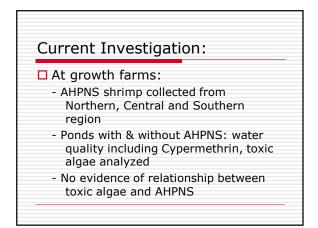
AHPNS/EMS in Shrimp in Vietnam

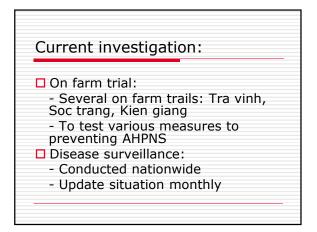

Pham Anh Tuan Directorate of Fisheries (D-FISH) MARD, Vietnam

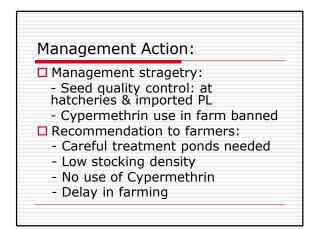

Current Trend & Impact of AHPNS:

- First occurrence: 2010
- Early mortality: 10- 70 days after stocking
- □ 100% mortality
- Clinical sign: slow growth, loose shells, pale coloration
- Abnormal hepatopancreas
- □ Total area affected in 2012: 39,000 ha
- Mainly in intensive shrimp farms

Current Trend & Impact of AHPNS: AHPNS observed in PL stage Species affected: Black tiger and white shrimp End of dry season: more seriously Estimated loss in 2012: 5,500 Billion VND (250 Million USSD)

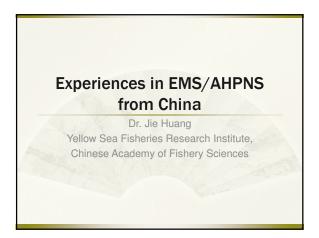


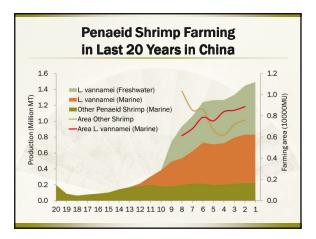

Current investigation:

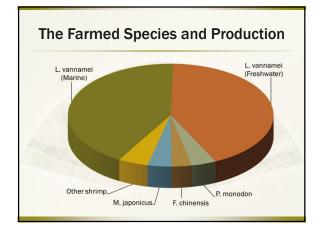

At the PL stage:

- Whether is AHPNDS at PL?
- 4 samples with AHPNS
- Samples have been collecting from different hatcheries
- Investigation into the relation
- between hatchery practice & AHPNS is needed

Current Investigation: Bioassay to determine infectious causation: Several bioassay conducted at RIA-I, II, III. There is treatment with few samples indicating abnormal hepatopancreas No confirmation by case definition




Conclusions:


- More bioassay to determine whether the virus/bacteria has any causal relationship to AHPNS needed
- Review lesson learn from the success shrimp farms
- □ International collaboration needed

Thanks:

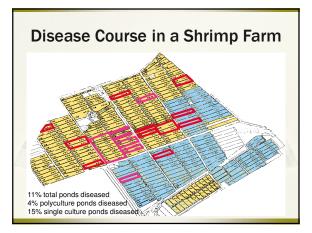
- Many thanks for support from FAO, OIE, NACA, WB
- Specially to Prof. Donald Lightner & Prof. Tim Flegel for technical supports

History of Disease "Covert Mortality" in China

- * Around 2009, a disease called "covert mortality" was noticed in some ponds farming L. vannamei in the southern coast of China.
- * The characteristic difference of the "convert mortality" from WSD is the diseased shrimp do not appear near the shallow or swim near the surface.

Disease "Covert Mortality"

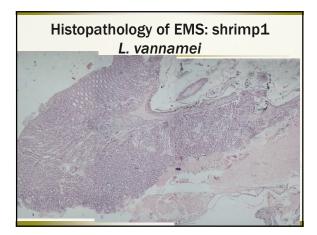
- The disease was normally found around 30 days post stocking. The death course happened slowly and daily. The final survival in ponds is above 20%-40%..
- The diseased shrimp show whitish or cloudy in the muscle of the abdomen. The HP may atrophy but the color is normal dark.
- The diseased shrimp do not appear near the shallow or swim near the surface. No or Rare birds appear on the diseased ponds. Improvement of the water quality can remit the disease. .
- . No known virulent virus was detected in the diseased shrimp.
- Bioassay with the disease materials does not repeat the same . results.
- The disease has relationship with stocking density. . Biological control with fish cocultivation has no effect.
- The "convert mortality" may be caused by multi facts, including stocking density, water and pond condition, and bacterial infection, etc.

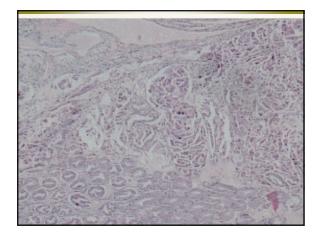

History of Disease "EMS/AHPNS"

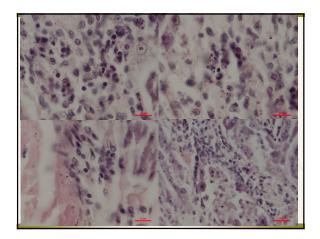
- * After 2010, a disease called "early mortality" was noticed in Hainan.
- * The disease characterizes with rapid and early mortality and yellow color HP.

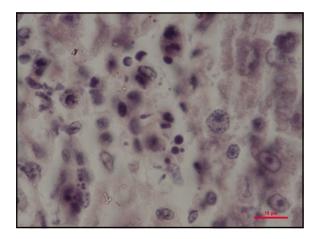
Disease EMS

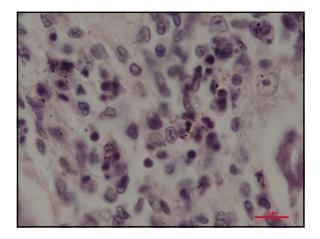
- The disease can outbreak as early as 7 days post stocking.
- The disease d shrinp do not appear near the shallow or swim near the surface. Some diseased shrinp can jump out the surface. No or Rare birds appear on the diseased ponds. The disease outbreaks rapidly and mortality can reach to 100% in 2–3 days.
- The disease usually outbreaks after weather change or with high growing blue green algae. But the pond has no premonition before the disease.
- the disease. The diseased shrimp appear with empty gut and stomach, yellow or discolored or small HP, swelling midgut, and slightly reddish skin. The known high virulent viruses, such as WSSV, TSV, and IMNV was not detected. Some virulent *Vibrio* spp. can be isolated from the diseased shrimp, but bioassays with the bacteria did not duplicate the disease features.

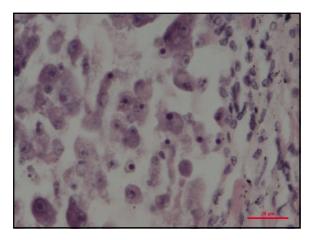


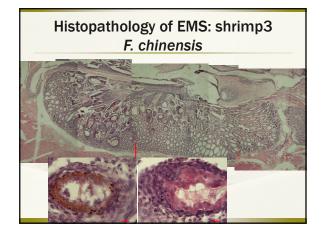

Government Supported Projects on EMS

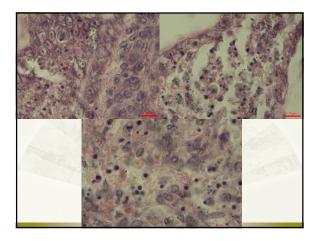

- * The Special Fund for Agro-scientific Research in the Public Interest
 - * Research and demonstration of the rapid diagnosis and biological control technology for the viral diseases in farmed shrimp (Grant: 201103034).
- * China Agriculture Research System
 - * The tasks for diseases control scientists in the Farmed Shrimp Research System (Grant: CARS-47).

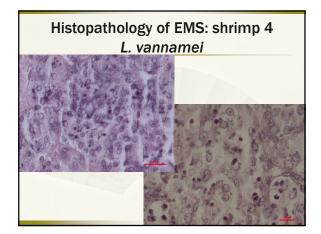

Characteristic Histopathology

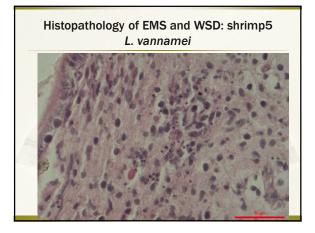

- * Cytoplasmic inclusions and pyknotic nuclei were found in the cells of lymphoid organ, hemocytes, and connective tissue.
- Infiltration of large numbers of hemocytes with the cytoplasmic inclusions was found in the HP and near HP midgut. The HP tubules destruction.
- Bacterial infection follows the degeneration in hepatopancreas and near HP midgut.
- Gills and other tissues show no significant change during the infection suggests diseased shrimp do not suffer anoxia.

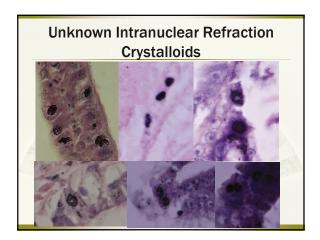


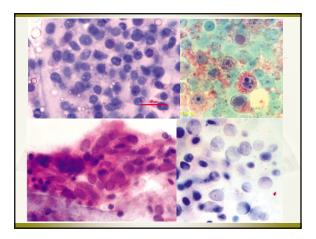


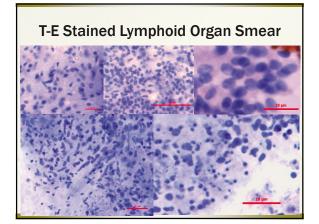












Diagnosis by	Rapid T-E Staining of
	Smear
 Prescripts of T-E state 	aining solution
 Trypan blue 	0.6g
 Eosin Y 	0.2g
* Phenol	0.5g
* NaCl	0.5g
* Glycerol	20 mL
* Water	80 mL
 Protocol of staining 	
	sion tissue on a slide and mince with a
 Add 1–2 drops of the tissue, mix and allo 	ne T-E staining solution to the minced with the stain for 3–5 min;
 Lay a cover glass o several pieces of al the mince into a sin 	over the stained tissue and cover with bsorbent paper. Use a thumb to squash igle layer of cells.

Detection and Analysis of Known Pathogens

- Samples were tested by PCR or LAMP for at least 15 pathogens, including WSSV, IHHNV, HPV, MBV, IMNV, TSV, YHV, GAV, PvNV, MrNV, MrDV, NHP, and Spiroplasma, etc. Positive results for some viruses obtained in some samples. No virus was always positive in all diseased samples. Further analysis is now on-going for confirmation. *Vibrio parahaemolyticus, V. alginolyticus, Pseudoalteromonas* sp., *Photobacterium damselae, V. harveyi*, and other V. spp. were isolated from the samples. Challenge with V. *parahaemolyticus* proved the existence of virulence. Bioassay showed both filtered and unfiltered homogenate
- Bioassay showed both filtered and unfiltered homogenate from diseased *F* chinensis could cause 100% mortality in 8 days post challenge. The unfiltered homogenate caused more rapid mortality.

Sequencing of Random Cloning of Virus Extracts

- The tissues were homogenized and centrifuged to * precipitate possible virus particles.
- The supposed virus preparation was digested with DNase and RNase to remove host nucleic acid.
- Inactive the DNase and RNase and extract the viral
- Random primer with AA at 3'-end was used to amplify possible virus nucleic acid. The amplified products were cloned and sequenced.
- Hundreds of sequences were obtained and analyzed by BLAST.
- 16 sequences are now selected for further preparing tests by *in situ* hybridization with slides of the shrimp tissues.

Hypothesis of the Mechanism of EMS

- * Supposed virus infection in the immune system of shrimp results immune turbulence.
- * The shrimp died due to the infectious immune turbulence followed by acute HP destruction and secondary infection of bacteria.
- The further confirmation research to prove * the hypothesis are on-going.

Research on biological control technology

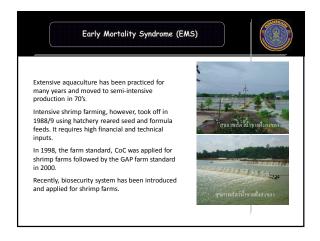
- Biological control technology by polyculture
 Freshwater: carp, catfish, snakehead, turtle, etc.

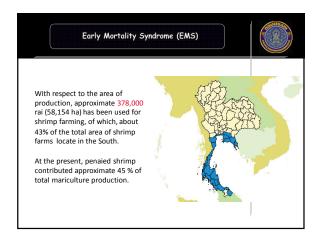
 - * Seawater: grouper, fugu, red fish, etc.
- * Disease-resistant probiotics feeding
 - * Collection of probiotics from gut of health shrimp. Selection of the disease-resistant enhancement ability of the probiotics. *
 - * Addition of the probiotics into shrimp feed.
- * Microorganism enhanced biofloc technology
 - * Selection of microorganisms with special function.
 - Functional enhance the biofloc technology with the selected microorganism.

Possible Resolution for EMS

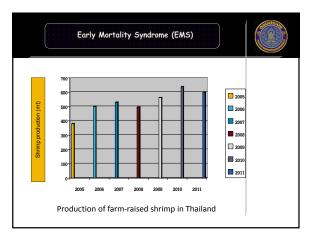
- * Rapid diagnostic kit for on-site use.
- * Disease surveillance
- * Egg or postlarva quarantine.
- * Polyculture technology.
- * Probiotics for feed and environment use.
- * Microorganism enhanced biofloc technology.
- * Combination of technologies.

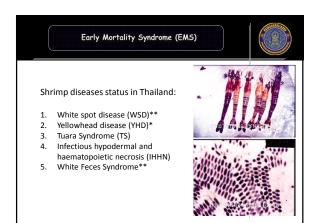
Early Mortality Syndrome (EMS)

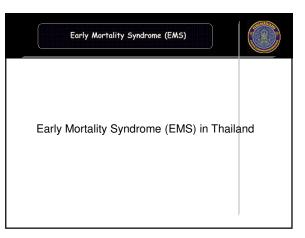


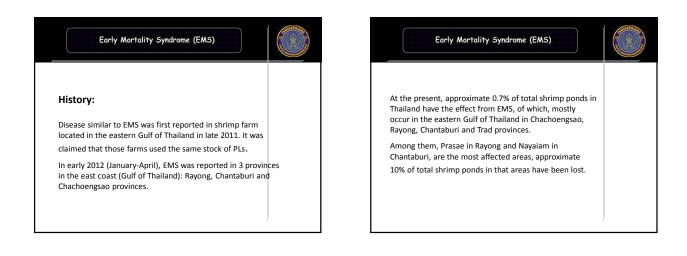


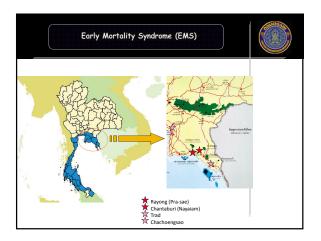
Shrimp farming in Thailand has been practiced more than 30 years, but develop and expand very rapidly during mid 1980s.

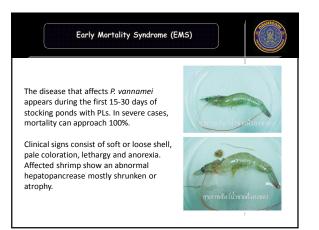

By 1987, *Penaeus monodon* took off in Thailand and spread quickly along the coast and its cultivation declined in 2000-2003 due to diseases and poor growth rate.

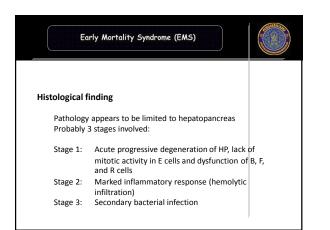

P. vannamei was first introduced to Thailand in 1997 but the cultivation was not succeeded. The development of white shrimp culture began in 2002, Since then, this shrimp has become very popular and the cultivation of black tiger shrimp was replaced.

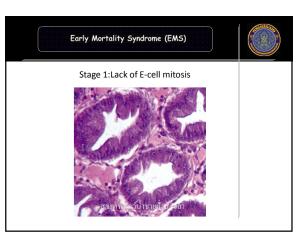


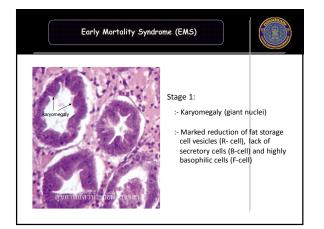


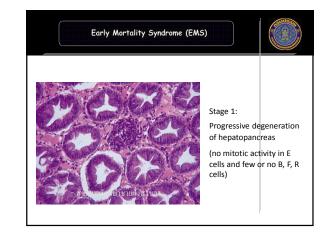


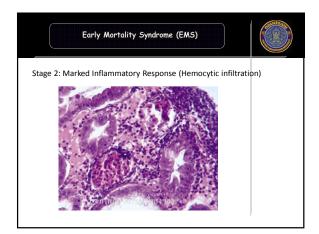


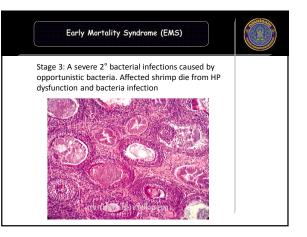


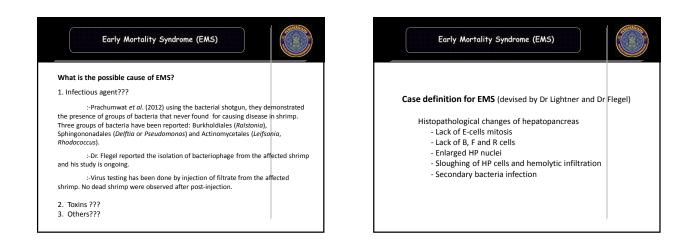


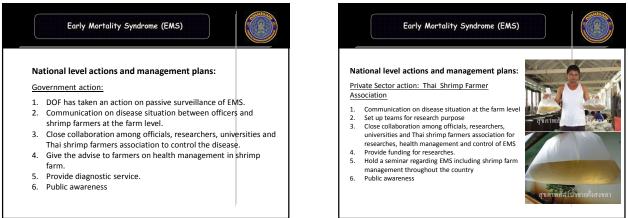




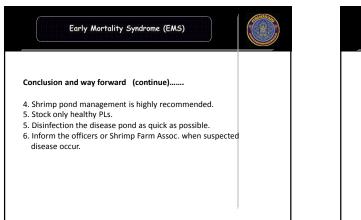




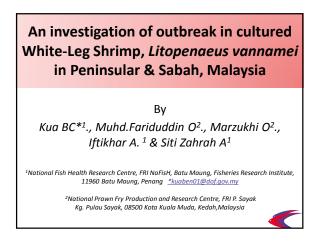


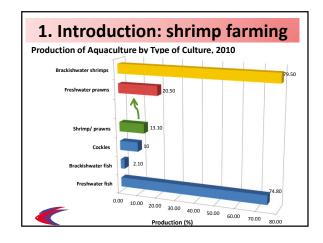


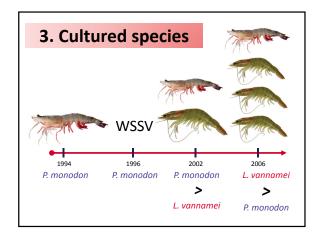
Early Mortality Syndrome (EMS)

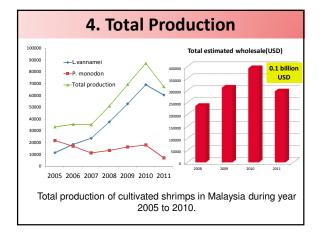

national level

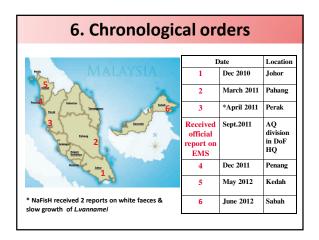
- 1. Strengthening private sectors and government cooperation on disease communication
- Information sharing among stakeholders and researchers
 Research Fund Agencies give attention to the EMS
- Research Fund Agencies give
 Increasing public awareness

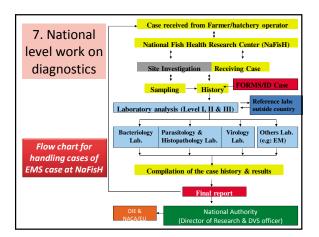

Conclusion and way forward

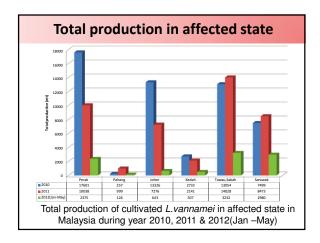

- 1. The causative agent for EMS has not yet be confirmed.
- Case definition describes the histological changes of hepathopacreas
 The possible of disease sequence
 - Lack of mitotic E-cell \longrightarrow Dysfunction of B,R and F cells \longrightarrow Karyomegary
 - \longrightarrow Marked inflammatory response in HP \longrightarrow 2° Bacterial infections
 - →Atrophy of HP → Shrimp die

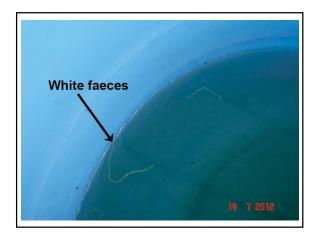

	Early Mortality Syndrome (EMS)
Wa	ıy Forward
1.	Identify the primary cause of EMS
2.	If the primary cause is the etiological agent (bacteria, virus) we can purpose this new agent to be controlled under the Animal Epidemic Act for its regulation at national level
3.	Immediate action; 3.1 The EMS will be an issue of discussion in the Committee for
	aquatic disease control under the Animal Epidemic Act of the DOF
	3.2 Public awareness through media
	3.3 The EMS will be integrated into the Notional Active Surveillance System
	3.4 Researches
4.	Set up contingency plans

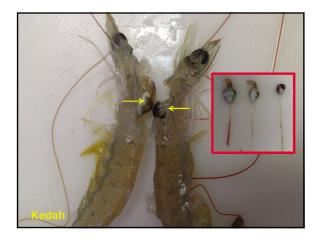




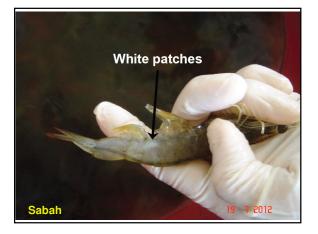


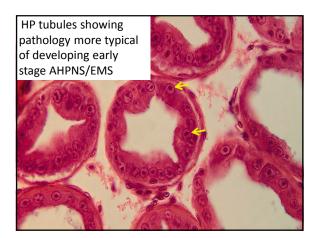


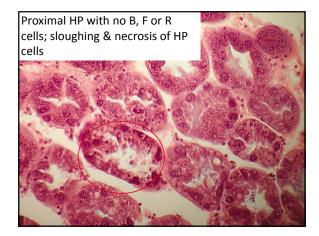

Phase	Period	Type of investigation
I.	Sept –	Case History
(Confirmation of	Dec	Gross observation
diseases)	2011	Hemolymph Anti-clotting time
		Bacteriology, Virology & Histopathology
Ш	Jan –	Virology (IMNV, TSV, PvNv, NHBP, TSV & IHHNV)
(Finding on the	Mac	Cross sectional study on chemical parameter of
associated factors with EMS)	2012	water quality with special reference to Day Of
		Culture (DOC) and Unionized Ammonia (NH ₃)
		Detection of Paralytic Shellfish Poison (PSP), ELISA
		& HPLC
III	April –	Awareness on EMS
(Awareness of EMS	Dec	Application of Fermentation, AC & FT at farm
& Control Measure by R&D)	2012	Investigation of EMS in Sabah

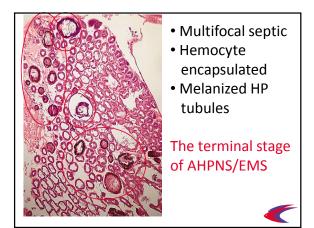

Location	Mortality period(DOC)	DOC upon sampling	Source of PL/ Health status	Survival rate (%)	Total productio (mt)
Perak					
Farm 1	27 & 40	40	Hatchery 1 / unknown	7	unknown
	30	43	Hatchery 2 / unknown	27	unknown
Farm 2	20 & 47	47	Hatchery 3 / SPF	unknown	unknown
	20	48	Hatchery 3 / SPF	unknown	unknown
Farm 3	Unknown	40	Hatchery 4 / SPF	unknown	unknown
Farm 4	30	33	Hathcery 5 /unknown	unknown	unknown
Pahang					
Farm 1	unknown	52	Hatchery 4 / SPF	44	3
	unknown	56	Hatchery 4 / SPF	44	3
	unknown	56	Hatchery 4 / SPF	27	3
	45	65	Hatchery 3 / SPF	83	8
Farm 2	Unknown	48	Hatchery 3 / SPF	25	2
Farm 2	36	54	Hatchery 4 / SPF	14	0.5
	31	52	Hatchery 4 / SPF	34	2
	40	84	Hatchery 4 / SPF	94	6
Farm 3	40	85	Hatchery 4 / SPF	33	2
Farm 3	40	89	Hatchery 4 / SPF	24	2
	40	89	Hatchery 4 / SPF	27	3
Penang					
Hatchery 1	unknown	unknown	Penang	unknown	unknown
Farm 1	48	50	Hatchery 1	40	unknown
	48	50	Hatchery 1	40	unknown

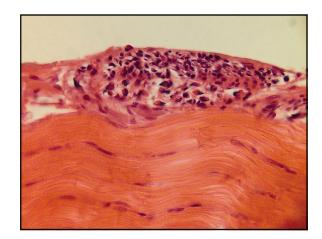
Location	Mortality period(DOC)	DOC upon sampling	Source of PL/ Health status	Survival rate (%)	Total production (mt)
Kedah					
Farm 1	30	30	Hatchery 5 / SPF	10	unknown
	30	30	Hatchery 5 / SPF	10	unknown
Farm 2	31	31	Hatchery 5 / SPF	10	unknown
	31	31	Hatchery 5 / SPF	10	unknown
'awau, Sabah					
Farm 1	50	120	Hatchery 3 / SPF	96	8
	50	120	Hatchery 3 / SPF	69	8
	50	120	Hatchery 3 / SPF	52	6
	50	120	Hatchery 3 / SPF	89	7
Farm 2	50	120	Hatchery 3 / SPF	87	7
rann 2	50	120	Hatchery 3 / SPF	87	7
	50	120	Hatchery 3 / SPF	82	8
	50	122	Hatchery 3 / SPF	26	1
Farm 3	50	119	Hatchery 3 / SPF	16	1
Tanno	50	119	Hatchery 3 / SPF	8.2	0.9
	50	120	Hatchery 3 / SPF	3.6	0.3
Farm 4	Slow growth after 50	126	Hatchery 3 / SPF	80	5


8. M	3. Methodology Approaches & Results				
Phase	Period	Type of investigation			
		Case History			
I .	Sept – Dec	Gross observation			
	2011	Hemolymph Anti-clotting time			
		Bacteriology, Virology & Histopathology			
		Virology IMNV, TSV, PvNv, NHBP & IHHNV)			
П п	Jan – Mac	Cross sectional study on chemical parameter of			
	2012	water quality with special reference to Day Of			
		Culture (DOC) and Unionized Ammonia (NH ₃)			
		Detection of Paralytic Shellfish Poison (PSP), ELISA			
		& HPLC			
- 111	April –	Awareness on EMS			
	Dec 2012	Application of Fermentation, AC & FT at farm			
		Investigation of EMS in Sabah			

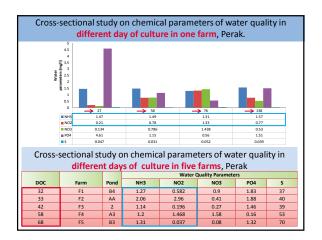


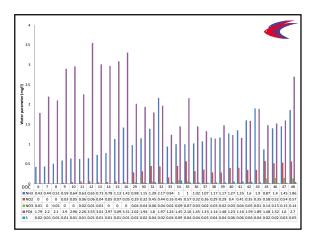


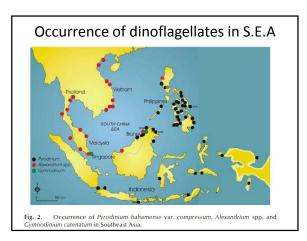




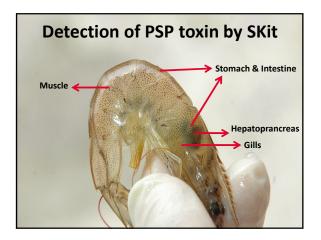
Phase	Period	Tune of investigation
Phase	Period	Type of investigation
		Case History
1	Sept – Dec	Gross observation
	2011	Hemolymph Anti-clotting time
		Bacteriology, Virology & Histopathology
		Virology IMNV, TSV, PvNv, NHBP & IHHNV)
П	Jan – Mac 2012	Cross sectional study on chemical parameter of
		water quality with special reference to Day Of
	-01-	Culture (DOC) and Unionized Ammonia (NH ₃)
		Detection of Paralytic Shellfish Poison (PSP), ELISA
		& HPLC
III	April –	Awareness on EMS
	Dec 2012	Application of Fermentation, AC & FT at farm
		Investigation of EMS in Sabah

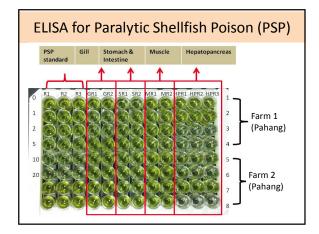


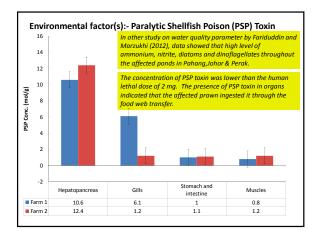


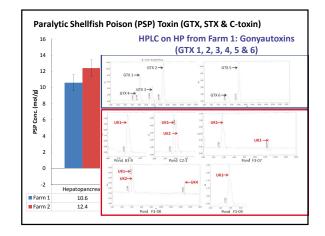

Location	Diagnosis results						
	Bacteriology	Virology (PCR)	Pathology				
Perak	Vibrio spp Photobacterium damsela	7/64 +ve IHHNV	Early & terminal stage AHPNS/EMS				
Pahang	Vibrio spp	0/110 -ve IHHNV & 0/20 -ve IMNV (Realtime PCR)	Early & terminal stage AHPNS/EMS				
Penang	-	0/22 –ve IHHNV	Early & terminal stage AHPNS/EMS				
Kedah	Vibrio spp	No sample	Terminal stage AHPNS/EMS&WSV				
Sabah	<i>Vibrio</i> spp	0/41 -ve IMNV, PvNv & NHBP (IQ Plus) 0/3 -ve TSV(IQREAL) IHHNV (on going)	Early & terminal stage of AHPNS/ EMS				

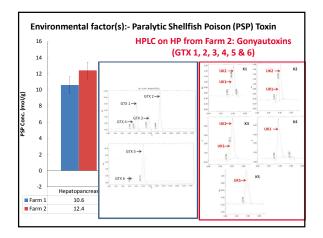
3. Methodology Approaches & Results					
Phase	Period	Type of investigation			
		Case History			
1	Sept – Dec	Gross observation			
	2011	Hemolymph Anti-clotting time			
	2011	Bacteriology, Virology & Histopathology			
		Virology (IMNV, TSV, PvNv, NHBP & IHHNV)			
п	Jan – Mac	Cross sectional study on chemical parameter of			
	2012	water quality with special reference to Day Of			
	2012	Culture (DOC) and Unionized Ammonia (NH ₃)			
		Detection of Paralytic Shellfish Poison (PSP), ELISA			
		& HPLC			
III	April –	Awareness on EMS			
	Dec 2012	Application of Fermentation, AC & FT at farm			
		Investigation of EMS in Sabah			

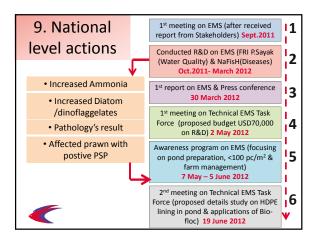


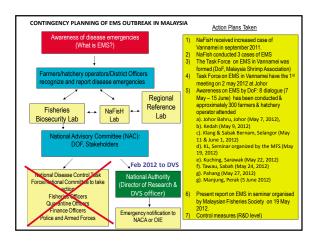

Plankton			Pał	Sa Anna an anna	
Plankton Group	Inlet	C4-07	C5-01	Outlet	BA SALE
Chlrophyceae					1. A.
Chlorella					
Cynophyceae					A AN
Oscillatoria elongata			+++++		
Baccilariophyceae (diatom)					AXX X
Coscinodiscus sp				+	the Att
Nitzchia sp	+				the start
Actinoptychis sp			+		The second second
Chaetoceros (filamen)		+			HAR INT
Dinophyceae					
Ceratium	+++++		+++++		20
Peridinium	+		+++		nt in o
Noctiluca	+				




			Country		
Species	Malaysia	Thailand	Indonesia	Vietnam	Philippines
Pseudo-nitzschia americana				+ ^b	_
Pseudo-nitzschia brasiliana	+b,dh	+0	+*	+b	+c
Pseudo-nitzschia caciantha	_	_		_	+c
Pseudo-nitzschia calliantha**	+b	+		+b	
Pseudo-nitzschia cuspidata			_	+b	
Pseudo-nitzschia delicatissima**	+b	+1		+b	
Pseudo-nitzschia dolorosa	+d				100-00
Pseudo-nitzschia fraudulenta**	_			+b	_
Pseudo-nitzschia cf. granii	_		_	+b	_
Pseudo-nitzschia heimii		+	_		_
Pseudo-nitzschia inflatula		+		+b	
Pseudo-nitzschia micropora	+b	+	_	+b	+*
Pseudo-nitzschia multistriata* *	+b			+b	_
Pseudo-nitzschia pungens	+dh	_	-24	+b	+ ^{a,c}
Pseudo-nitzschia pseudodelicatissima**	_			_	+c
Pseudo-nitzschia cf. sinica	_	+	_	+b	_
Pseudo-nitzschia subpacifica	_	+		_	_
ources: ^a Bajarias e <i>t al</i> . 2006, ^b Larsen and t al. 2002, ^f Prissholm et al. 2002, ^g Sidab 'Toxic species.				08, ^d Lim 20	10, °Lundholm


Phase	Period	Type of investigation
		Case History
	Sont Doc	Gross observation
1	Sept – Dec 2011	Hemolymph Anti-clotting time
	2011	Bacteriology, Virology & Histopathology
		Virology (IMNV, TSV, PvNv, NHBP & IHHNV)
п	Jan – Mac	Cross sectional study on chemical parameter of
	2012	water quality with special reference to Day Of
	2012	Culture (DOC) and Unionized Ammonia (NH ₃)
		Detection of Paralytic Shellfish Poison (PSP), ELISA
		<u>& HPLC</u>
Ш	April –	Awareness on EMS
	Dec 2012	Application of Fermentation, AC & FT at farm
		Investigation of EMS in Sabah





Phase	Period	Type of investigation
		Case History
1	Sent – Dec	Gross observation
	2011	Hemolymph Anti-clotting time
		Bacteriology, Virology & Histopathology
		<u>Virology (IMNV, TSV, PvNv, NHBP & IHHNV)</u>
Ш	Jan – Mac	Cross sectional study on chemical parameter of
	2012	water quality with special reference to Day Of
		Culture (DOC) and Unionized Ammonia (NH ₃)
		Detection of Paralytic Shellfish Poison (PSP), ELISA
		<u>& HPLC</u>
III	April –	Awareness on EMS
	Dec 2012	Application of Fermentation, AC & FT at farm
		Investigation of EMS in Sabah

10. National Level Epidemiological
• L. vanammei has never been conducted
since 2002
• Epidemiological study based on reported
cases and R&D (Phase III)
- Application of F, AC & FT (Perak)
 Application of HDPE Lining (Selangor) *Application of beta-defender(Sabah)
- Application of beta-defender(sabari)

Location	Control measure used	Pond	Stocking density (pcs/m2)	Mortality 10-30 DOC (%)	Survival rate (%)	Total production (mt)
Perak						
	Activated carbon (AC)	1	125	15 (DOC26)	60	3.3 (DOC95
		2	110	<1	On going	On going
	Diagnosis		DOC 20	DOC 40	DOC 60	DOC 80
Company 1	(Histology)	1 & 2	No EMS pathology	No EMS pathology	On going	
	Fermentation	3	125	<1	On going	On going
	(F)	4	125	<1	On going	On going
	Diagnosis		DOC 20	DOC 40	DOC 60	DOC 80
	(Histology)	3 & 4	No EMS pathology	No EMS pathology	On going	

Epi	Epidemiological study: Application of FT (Perak)						
Location	Control measure used	Pond	Stocking density (pcs/m2)	Mortality 10-30 DOC (%)	Survival rate (%)	Total production (mt)	
Perak							
	Fish Tonic(FT)	1	100	-	On going	On going	
		2	100	-	On going	On going	
Company 2	Control	3	100	-	On going	On going	
	Diagnosis a. Pathology (Histology) b. Virology (IMNV, PvNv & NHP) by IQplus & (IHHNV) by primer 389		DOC 0	DOC 10	DOC 20	DOC 30100	
		1	On going	On going	On going	On going	
			On going	On going	On going	On going	
		2	On going	On going	On going	On going	
			On going	On going	On going	On going	
	c. Bacteriology (hemolymph) d. WQ e.Plankton	3	On going	On going	On going	On going	

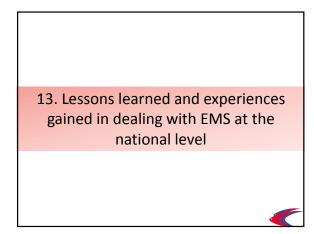
Epidemiological study: Application of Tripotence & OTC (Kedah)							
Location	Control measure used	Pond	Stocking density (pcs/m2)	Mortality 10-30 DOC (%)	Survival rate (%)	Total productior (mt)	
Kedah							
	Tripotence	1	70	-	On going	On going	
	Oxytetracycline (DOC15-20)	2	70	50 (DOC36)	On going	On going	
	Diagnosis a. Pathology (Histology) b. Virology (IMNV)IQplus c. Bacteriology (hemolymph) d. WQ		DOC 35	DOC 40	DOC 60	DOC 70100	
Company 3		1	On going	On going			
			DOC 70	DOC 80	DOC 90	DOC 100	
		2	On going				

10. National Level Epidemiological

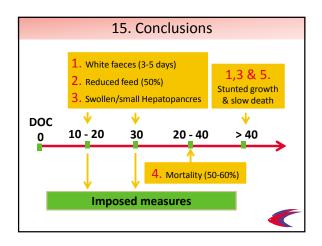
• *L. vanammei* has never been conducted since 2002

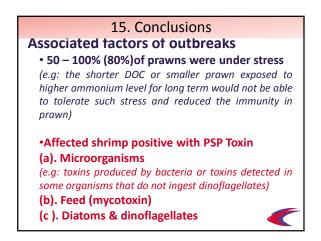
• Epidemiological study based on reported cases and R&D (Phase III, April–Dec 2012)

- Application of F, AC & FT (Perak)


- Application of HDPE Lining (Selangor)
- *Application of beta-defender(Sabah)

11. International collaborations to solve the problem


• Awareness given by private company



- Confirmation of EMS pathology (Dr. Lightner)
- Confirmation of toxin by HPLC
- (Prof. Kadamo & Dr. Takata)

Phase I	Perak (Pond)	Kedah (Pond)	Penang (Hatchery)	Penang (Pond)	Pahang (Pond)	Sabah (Pond)
Identify problem a). Mortality	20 – 40 DOC	30-20 DOC	unknown	50-60 DOC	40 - 89 DOC	> 50 DOC
b). Clinical signs	White faeces, Whitish muscle, reduced feed	White faeces, Whitish muscle, reduced feed	Slow growth	White faeces, Whitish muscle, reduced feed	White faeces, Whitish muscle, reduced feed	White faeces, Whitish muscle, stunted growth, soft body
Results a).Bacteriology	Vibrio spp	Vibrio spp	Vibrio spp	No grow	No grow	Vibrio spp
b). Histopathology	Idiopathic Early & terminal stage of EMS	Early & terminal stage of EMS •WSSV	 Idiopathic 	Early & terminal stage of EMS	 Early & terminal stage of EMS 	Early & terminal stage of EMS
Presumptive Diagnosis	1. 30-Day mor syndrome, (AHN		unknown	2. Slow Death & EMS(?)		
Phase II 2. Environmental factor(s): (Associated factors) - Ammonia & Nitrate impacts - Toxin from microorganisms/feed/diatom/ dinoflagellate						

16. Way forward

The CA should have more control on the introduction of super growth or high achiever stock
Epidemiological study on cultivated shrimp should be active program & consistent by DOF Malaysia
Be more precautious in using probiotic

 Awareness among the FO(s) at state level will help the farmer directly & also diagnostic centre (first hand information)

•Awareness given to target group will create a proactive responses to improve the reporting & R&D works (cross infectious between species)

•Collaboration among the regional country focusing on various aspect of AHPNS/EMS

Acknowledgements

Farm managers (Perak, Pahang, Sabah, Kedah & Penang)
NACA & DAFF

